Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38069289

The analytical applications of antibodies are often associated with their immobilization on different carriers, which is accompanied by a loss of antigen-binding activity for a sufficient proportion of the bound antibodies. In contrast to data on plain carriers, minimal data are available on the properties of antibodies on the surfaces of nanoparticles. Protein antigens have been predominantly investigated, for which space restrictions do not allow them to occupy all active sites of immobilized antibodies. This study considered a low-molecular-weight compound, fluorescein, as an antigen. Spherical gold nanoparticles with five different sizes, two differently charged forms of fluorescein, and three different levels of surface coverage by immobilized antibodies were tested. For gold nanoparticles with diameters from 14 to 35.5 nm with monolayers of immobilized antibodies, the percentage of molecules capable of binding carboxyfluorescein varied from 6% to 17%. The binding of aminofluorescein was more efficient; for gold nanoparticles with an average diameter of 21 nm, the percentage of active binding sites for the immobilized antibodies reached 27% compared with 13% for the carboxyfluorescein case. A fourfold reduction in the coverage of the nanoparticles' surface compared with that of the monolayer did not lead to reliable changes in the percentage of active binding sites. The obtained data demonstrate that an antigen's binding to immobilized antibodies is limited even for small antigens and depends on the size of the nanoparticles and the electrostatic repulsion near their surface.


Antibodies, Immobilized , Metal Nanoparticles , Antibodies, Immobilized/chemistry , Gold/chemistry , Fluorescein , Metal Nanoparticles/chemistry , Antibodies , Antigens
2.
Nanomaterials (Basel) ; 13(23)2023 Dec 04.
Article En | MEDLINE | ID: mdl-38063770

In this study, we developed a sensitive immunochromatographic analysis (ICA) of the Salmonella typhimurium bacterial pathogen contaminating food products and causing foodborne illness. The ICA of S. typhimurium was performed using Au@Pt nanozyme as a label ensuring both colorimetric detection and catalytic amplification of the analytical signal due to nanozyme peroxidase-mimic properties. The enhanced ICA enabled the detection of S. typhimurium cells with the visual limit of detection (LOD) of 2 × 102 CFU/mL, which outperformed the LOD in the ICA with traditional gold nanoparticles by two orders of magnitude. The assay duration was 15 min. The specificity of the developed assay was tested using cells from various Salmonella species as well as other foodborne pathogens; it was shown that the test system detected only S. typhimurium. The applicability of ICA for the determination of Salmonella in food was confirmed in several samples of milk with different fat content, as well as chicken meat. For these real samples, simple pretreatment procedures were proposed. Recoveries of Salmonella in foodstuffs were from 74.8 to 94.5%. Due to rapidity and sensitivity, the proposed test system is a promising tool for the point-of-care control of the Salmonella contamination of different food products on the whole farm-to-table chain.

3.
Biosensors (Basel) ; 13(7)2023 Jul 20.
Article En | MEDLINE | ID: mdl-37504148

Reliable detection of specific antibodies against pathogens by lateral flow immunoassay (LFIA) greatly depends on the composition of the detectable complex and the order of its assembly. We compared three LFIA formats for revealing anti-SARS-CoV-2 antibodies in sera with the following detected complexes in the analytical zone of the strip: antigen-antibodies-labeled immunoglobulin-binding protein (Scheme A); antigen-antibodies-labeled antigen (Scheme B); and immunoglobulin-binding protein-antibodies-labeled antigen (Scheme C). The lowest detection limit was observed for Scheme C, and was equal to 10 ng/mL of specific humanized monoclonal antibodies. When working with pooled positive sera, Scheme C had a detection limit 15 times lower than Scheme B and 255 times lower than Scheme A. Due to the high sensitivity of Scheme C, its application for the panel of human sera (n = 22) demonstrated 100% diagnostic specificity and sensitivity. These consistent results be useful for designing the format of LFIA serodiagnosis for other diseases.


COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Antigens , Antibodies, Viral , Immunoassay/methods , Sensitivity and Specificity
4.
Micromachines (Basel) ; 13(12)2022 Dec 11.
Article En | MEDLINE | ID: mdl-36557493

The paper presents development and characterization of a new bioanalytical test system for rapid detection of lipopolysaccharide (LPS) and whole cells of Francisella tularensis, a causative agent of tularemia, in water samples. Gold nanoparticles (AuNPs) coated by the obtained anti-LPS monoclonal antibodies were used for the assay. Their contact with antigen in tested samples leads to aggregation with a shift of absorption spectra from red to blue. Photometric measurements at 530 nm indicated the analyte presence. Three preparations of AuNPs with different diameters were compared, and the AuNPs having average diameter of 34 nm were found to be optimal. The assay is implemented in 20 min and is characterized by detection limits equal to 40 ng/mL for LPS and 3 × 104 CFU/mL for whole cells of F. tularensis. Thus, the proposed simple one-step assay integrates sensitivity comparable with other immunoassay of microorganisms and rapidity. Selectivity of the assay for different strains of F. tularensis was tested and the possibility to choose its variants with the use of different antibodies to distinguish virulent and non-virulent strains or to detect both kinds of F. tularensis was found. The test system has been successfully implemented to reveal the analyte in natural and tap water samples without the loss of sensitivity.

5.
Biosensors (Basel) ; 12(7)2022 Jun 21.
Article En | MEDLINE | ID: mdl-35884237

The presence of pathogen-specific antibodies in the blood is widely controlled by a serodiagnostic technique based on the lateral flow immunoassay (LFIA). However, its common one-stage format with an antigen immobilized in the binding zone of a test strip and a nanodispersed label conjugated with immunoglobulin-binding proteins is associated with risks of very low analytical signals. In this study, the first stage of the immunochromatographic serodiagnosis was carried out in its traditional format using a conjugate of gold nanoparticles with staphylococcal immunoglobulin-binding protein A and an antigen immobilized on a working membrane. At the second stage, a labeled immunoglobulin-binding protein was added, which enhanced the coloration of the bound immune complexes. The use of two separated steps, binding of specific antibodies, and further coloration of the formed complexes, allowed for a significant reduction of the influence of non-specific immunoglobulins on the assay results. The proposed approach was applied for the serodiagnosis using a recombinant RBD protein of SARS-CoV-2. As a result, an increase in the intensity of test zone coloration by more than two orders of magnitude was demonstrated, which enabled the significant reduction of false-negative results. The diagnostic sensitivity of the LFIA was 62.5% for the common format and 100% for the enhanced format. Moreover, the diagnostic specificity of both variants was 100%.


COVID-19 , Metal Nanoparticles , Antigen-Antibody Complex , COVID-19/diagnosis , Gold/chemistry , Humans , Immunoassay/methods , Limit of Detection , Metal Nanoparticles/chemistry , SARS-CoV-2 , Serologic Tests
6.
Anal Bioanal Chem ; 414(15): 4471-4480, 2022 Jun.
Article En | MEDLINE | ID: mdl-35359179

A new bioanalytical labeling system based on alloyed quantum dots' (QDs) photoluminescence quenching caused by an enzymatic reaction has been developed and tested for the first time. The catalytic role of the enzyme provides high sensitivity and the possibility of varying detecting time to improve assay sensitivity. Alloyed luminescent QDs were chosen in view of their small size (5-7 nm) and the high sensitivity of their optical properties to physicochemical interactions. Here, we described the synthesis of alloyed luminescent QDs and demonstrated the possibility of using them as a luminescent turn-off substrate for enzymatic assay. Synthesized alloyed QDs were found to be a sensitive turn-off substrate for glucose oxidase in homogeneous and heterogeneous assay models. CdZnSeS and CdZnSeS/ZnS QDs covered with dihydrolipoic acid and 2-mercaptoethanol were tested. A glucose oxidase limit of detection of 6.6 nM for the heterogenous high-throughput model assay was reached.


Quantum Dots , Alloys , Enzyme Assays , Glucose Oxidase , Luminescent Measurements , Quantum Dots/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry
7.
Biosensors (Basel) ; 11(12)2021 Dec 10.
Article En | MEDLINE | ID: mdl-34940267

The current COVID-19 pandemic has increased the demand for pathogen detection methods that combine low detection limits with rapid results. Despite the significant progress in methods and devices for nucleic acid amplification, immunochemical methods are still preferred for mass testing without specialized laboratories and highly qualified personnel. The most widely used immunoassays are microplate enzyme-linked immunosorbent assay (ELISA) with photometric detection and lateral flow immunoassay (LFIA) with visual results assessment. However, the disadvantage of ELISA is its considerable duration, and that of LFIA is its low sensitivity. In this study, the modified LFIA of a specific antigen of the causative agent of COVID-19, spike receptor-binding domain, was developed and characterized. This modified LFIA includes the use of gold nanoparticles with immobilized antibodies and 4-mercaptobenzoic acid as surface-enhanced Raman scattering (SERS) nanotag and registration of the nanotag binding by SERS spectrometry. To enhance the sensitivity of LFIA-SERS analysis, we determined the optimal compositions of SERS nanotags and membranes used in LFIA. For benchmark comparison, ELISA and conventional colorimetric LFIA were used with the same immune reagents. The proposed method combines a low detection limit of 0.1 ng/mL (at 0.4 ng/mL for ELISA and 1 ng/mL for qualitative LFIA) with a short assay time equal to 20 min (at 3.5 h for ELISA and 15 min for LFIA). The results obtained demonstrate the promise of using the SERS effects in membrane immuno-analytical systems.


COVID-19 Testing/methods , COVID-19 , Immunoassay , Metal Nanoparticles , Spectrum Analysis, Raman , Antigens, Viral/isolation & purification , COVID-19/diagnosis , Gold , Humans , SARS-CoV-2
8.
Sensors (Basel) ; 21(21)2021 Oct 26.
Article En | MEDLINE | ID: mdl-34770405

Many studies have found that gold nanoparticles with branched surfaces (nanoflowers) are markers for immunosensors that provide higher sensitivity gains than the commonly used spherical gold nanoparticles. Although the analytical characteristics of nanoparticle-using systems vary significantly depending on their size and shape, the question of choosing the best gold nanoflowers remains open. This work presents a comparative study of a panel of 33 preparations of gold nanoflowers formed by varying several parameters: the size of spherical nanoparticles-nuclei, the concentrations of nuclei, and tetrachloroauric acid during growth. The sizes of the resulting particles, their sorption capacity under antibody immobilization, mobility along membranes for lateral flow assays, and the effects of these parameters on the limits of detection of lateral flow immunoassay are characterized. The optimality of preparations obtained by growing a 0.2% v/v solution of nuclei with a diameter of 10 or 20 nm with tetrachloroauric acid at a concentration of 0.12 mM was shown. With their use, lateral flow immune tests were developed to determine markers of acute myocardial infarction-fatty acids binding protein and troponins I and T. The use of gold nanoflowers obtained under the proposed protocols led to significant gains in the limits of detection-3 to 10 times under visual detection and over 100 times under instrumental detection-compared to spherical gold nanoparticles. The significant increase under instrumental detection is due to the label's low nonspecific binding.


Biosensing Techniques , Metal Nanoparticles , Antibodies , Gold , Immunoassay
9.
Nanomaterials (Basel) ; 11(11)2021 Nov 18.
Article En | MEDLINE | ID: mdl-34835881

Antibody-nanoparticle conjugates are widely used analytical reagents. An informative parameter reflecting the conjugates' properties is the number of antibodies per nanoparticle that retain their antigen-binding ability. Estimation of this parameter is characterized by a lack of simple, reproducible methods. The proposed method is based on the registration of fluorescence of tryptophan residues contained in proteins and combines sequential measurements of first the immobilized antibody number and then the bound protein antigen number. Requirements for the measurement procedure have been determined to ensure reliable and accurate results. Using the developed technique, preparations of spherical gold nanoparticles obtained by the most common method of citrate reduction of gold salts (the Turkevich-Frens method) and varying in average diameter from 15 to 55 nm have been characterized. It was shown that the number of antibodies (immunoglobulins G) bound by one nanoparticle ranged from 30 to 194 during adsorptive unoriented monolayer immobilization. C-reactive protein was considered as the model antigen. The percentage of antibody valences that retained their antigen-binding properties in the conjugate increased from 17 to 34% with an increase in the diameter of gold nanoparticles. The proposed method and the results of the study provide tools to assess the capabilities of the preparations of gold nanoparticles and their conjugates as well as the expediency of seeking the best techniques for various practical purposes.

10.
Biosensors (Basel) ; 11(7)2021 Jul 08.
Article En | MEDLINE | ID: mdl-34356700

Three techniques were compared for lowering the limit of detection (LOD) of the lateral flow immunoassay (LFIA) of the receptor-binding domain of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) based on the post-assay in situ enlargement of Au nanoparticles (Au NPs) on a test strip. Silver enhancement (growth of a silver layer over Au NPs-Au@Ag NPs) and gold enhancement (growth of a gold layer over Au NPs) techniques and the novel technique of galvanic replacement of Ag by Au in Au@Ag NPs causing the formation of Au@Ag-Au NPs were performed. All the enhancements were performed on-site after completion of the conventional LFIA and maintained equipment-free assay. The assays demonstrated lowering of LODs in the following rows: 488 pg/mL (conventional LFIA with Au NPs), 61 pg/mL (silver enhancement), 8 pg/mL (galvanic replacement), and 1 pg/mL (gold enhancement). Using gold enhancement as the optimal technique, the maximal dilution of inactivated SARS-CoV-2-containing samples increased 500 times. The developed LFIA provided highly sensitive and rapid (8 min) point-of-need testing.


COVID-19/diagnosis , Gold/chemistry , SARS-CoV-2/isolation & purification , Silver/chemistry , Spike Glycoprotein, Coronavirus/analysis , Binding Sites , Early Diagnosis , Humans , Immunoassay , Limit of Detection , Metal Nanoparticles , Point-of-Care Testing , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
11.
Mikrochim Acta ; 188(9): 309, 2021 Aug 27.
Article En | MEDLINE | ID: mdl-34453188

Platinum-containing nanozymes with peroxidase-mimicking activity (PMA) have found a broad application in bioanalytical methods and are potentially able to compete with enzymes as the labels. However, traditionally used methods for the synthesis of nanozymes result in only a small fraction of surface-exposed Pt atoms, which participate in catalysis. To overcome this limitation, we propose a new approach for the synthesis of nanozymes with the efficient dispersion of Pt atoms on particles' surfaces. The synthesis of nanozymes includes three steps: the synthesis of gold nanoparticles (Au NPs), the overgrowth of a silver layer over Au NPs (Au@Ag NPs, 6 types of NPs with different thicknesses of Ag shell), and the galvanic replacement of silver with PtCl62- leading to the formation of trimetallic Au@Ag-Pt NPs with uniformly deposited catalytic sites and high Pt-utilization efficiency. Au@Ag-Pt NPs (23 types of NPs with different concentrations of Pt) with various sizes, morphology, optical properties, and PMA were synthesized and comparatively tested. Using energy-dispersive spectroscopy mapping, we confirm the formation of core@shell Au@Ag NPs and dispersion of surface-exposed Pt. The selected Au@Ag-Pt NPs were conjugated with monoclonal antibodies and used as the colorimetric and catalytic labels in lateral flow immunoassay of the inflammation biomarker: C-reactive protein (CRP). The colorimetric signal enhancement was achieved by the oxidation of 3,3'-diaminobenzidine by H2O2 catalyzed by Au@Ag-Pt NPs directly on the test strip. The use of Au@Ag-Pt NPs as the catalytic label produces a 65-fold lower limit of CRP detection in serum (15 pg mL-1) compared with Au NPs and ensures the lowest limit of detection for equipment-free lateral flow immunoassays. The assay shows a high correlation with data of enzyme-linked immunosorbent assay (R2 = 0.986) and high recovery (83.7-116.2%) in serum and plasma. The assay retains all the benefits of lateral flow immunoassay as a point-of-care method.


C-Reactive Protein/analysis , Colorimetry/methods , Immunoassay/methods , Metal Nanoparticles/chemistry , 3,3'-Diaminobenzidine/chemistry , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , C-Reactive Protein/immunology , Catalysis , Coloring Agents/chemistry , Gold/chemistry , Humans , Hydrogen Peroxide/chemistry , Limit of Detection , Molecular Mimicry , Oxidation-Reduction , Platinum/chemistry , Silver/chemistry
12.
J Food Sci Technol ; 58(1): 292-301, 2021 Jan.
Article En | MEDLINE | ID: mdl-33505073

Aminoglycosides belong to a class of antibiotics now widely used in agriculture and veterinary medicine and expected to contaminate food products. In this study, a sensitive lateral flow immunoassay (LFIA) of an aminoglycoside neomycin (NEO) was developed. Two methods of immunochromatographic detection based on various techniques of gold nanoparticles (AuNPs) introduction as a label were compared. It was demonstrated that the indirect labeling (a conjugation of anti-species antibodies with a marker) allowed for an increase in assay sensitivity by 80 times. The test system was characterized by an instrumental limit of detection of 0.1 ng/mL and the cutoff level of 10 ng/mL; the assay duration was 15 min. Specificity only toward NEO was demonstrated. The developed LFIA has been tested to detect NEO in different foodstuffs. It has been demonstrated that 70-119% of NEO (coefficients of variations < 10%) can be determined in milk, turkey meat, honey, and eggs using simple procedures of preliminary sample preparation. Testing the samples showed the coincidence of the results for the developed lateral flow assay and for commercial ELISA kit.

13.
Talanta ; 224: 121860, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-33379071

C-reactive protein, cystatin C, myoglobin, and D-dimer represent the inflammatory or thromboembolic status of the patient and play important roles in early diagnostics of acute myocardial infarction. Each protein can indicate some health problems, but their simultaneous detection can be crucial for differential diagnostics. The express analysis of these proteins in a small drop of plasma was developed using magnetic beads. The suggested method is based on immunomagnetic extraction of the target analyte from plasma samples and its simultaneous labelling by fluorescent dye. Reaction time was optimized for quantification of cardiac biomarkers in the spike solutions and human plasma samples. In this paper, we developed a one-protein detection technique for each cardiac biomarker and united it to a four-protein facility using an automatic platform. The proposed technique requires only 17 µL of the human plasma and takes 14 min for four-protein measuring. The suggested technique covers concentration difference by more than two orders of magnitude and demonstrates analytical applicability by measurements of human plasma samples of 16 volunteers.


Myocardial Infarction , Myoglobin , Biomarkers , Humans , Immunoassay , Immunomagnetic Separation , Myocardial Infarction/diagnosis
14.
Sensors (Basel) ; 20(12)2020 Jun 26.
Article En | MEDLINE | ID: mdl-32604874

The use of lateral flow immunoassays (LFIAs) for rapid on-site testing is restricted by their relatively high limit of detection (LoD). One possible way to decrease the LoD is to optimize nanoparticle properties that are used as labels. We compare two types of Au nanoparticles: usual quasispherical gold nanoparticles (C-GNPs), obtained by the Turkevich-Frens method, and superspherical gold nanoparticles (S-GNPs), obtained by a progressive overgrowth technique. Average diameters were 18.6-47.5 nm for C-GNPs and 20.2-90.4 nm for S-GNPs. Cardiomarker troponin I was considered as the target analyte. Adsorption and covalent conjugation with antibodies were tested for both GNP types. For C-GNPs, the minimal LoD was obtained with 33.7 nm nanoparticles, reaching 12.7 ng/mL for covalent immobilization and 9.9 ng/mL for adsorption. The average diameter of S-GNPs varied from 20.2 to 64.5 nm, which resulted in a decrease in LoD for an LFIA of troponin I from 3.4 to 1.2 ng/mL for covalent immobilization and from 2.9 to 2.0 ng/mL for adsorption. Thus, we obtained an 8-fold decrease in LoD (9.9 to 1.2 ng/mL) by using S-GNPs. This effect can be related to more effective antibody immobilization and improved S-GNP optical properties. The obtained results can improve LFIAs for various practically significant analytes.


Antibodies , Gold , Immunoassay , Metal Nanoparticles , Limit of Detection
15.
Sensors (Basel) ; 19(24)2019 Dec 12.
Article En | MEDLINE | ID: mdl-31842479

The integration of several controlled parameters within a single test system is experiencing increased demand. However, multiplexed test systems typically require complex manufacturing. Here, we describe a multiplexed immunochromatographic assay that incorporates a conventional nitrocellulose membrane, which is used together with microspot printing, to construct adjacent microfluidic "tracks" for multiplexed detection. The 1 mm distance between tracks allows for the detection of up to four different analytes. The following reagents are applied in separate zones: (a) gold nanoparticle conjugates with antibodies against each analyte, (b) other antibodies against each analyte, and (c) antispecies antibodies. The immersion of the test strip in the sample initiates the lateral flow, during which reagents of different specificities move along their tracks without track erosion or reagent mixing. An essential advantage of the proposed assay is its extreme rapidity (1-1.5 min compared with 10 min for common test strips). This assay format was applied to the detection of cardiac and inflammatory markers (myoglobin, D-dimer, and C-reactive protein) in human blood, and was characterized by high reproducibility (8%-15% coefficient of variation) with stored working ranges of conventional tests. The universal character of the proposed approach will facilitate its use for various analytes.


Antibodies/isolation & purification , Biosensing Techniques , Diagnostic Techniques, Cardiovascular , Immunoassay/methods , Antibodies/genetics , C-Reactive Protein/genetics , C-Reactive Protein/isolation & purification , Chromatography, Affinity , Fibrin Fibrinogen Degradation Products/genetics , Fibrin Fibrinogen Degradation Products/isolation & purification , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Myoglobin/blood , Myoglobin/isolation & purification , Reagent Strips/chemistry
16.
Biosensors (Basel) ; 8(4)2018 Nov 15.
Article En | MEDLINE | ID: mdl-30445781

Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the main pathogens of grapes, causing a significant loss in yield and decrease in quality for this agricultural plant. For efficient widespread control of this infection, rapid and simple analytical techniques of on-site testing are requested as a complementary addition for the currently applied hybridization (PCR) and immunoenzyme (ELISA) approaches. The given paper presents development and approbation of the immunochromatographic assay (ICA) for rapid detection of GLRaV-3. The ICA realizes a sandwich immunoassay format with the obtaining complexes ((antibody immobilized on immunochromatographic membrane)⁻(virus in the sample)⁻(antibody immobilized on gold nanoparticles (GNP)) during sample flow along the membrane compounds of the test strip. Three preparations of GNPs were compared for detection of GLRaV-3 at different dilutions of virus-containing sample. The GNPs with maximal average diameters of 51.0 ± 7.9 nm provide GLRaV-3 detection for its maximal dilutions, being 4 times more than when using GNPs with a diameter of 28.3 ± 3.3 nm, and 8 times more than when using GNPs with a diameter of 18.5 ± 3.3 nm. Test strips have been manufactured using the largest GNPs conjugated with anti-GLRaV-3 antibodies at a ratio of 1070:1. When testing samples containing other grape wine viruses, the test strips have not demonstrated staining in the test zone, which confirms the ICA specificity. The approbation of the manufactured test strips indicated that when using ELISA as a reference method, the developed ICA is characterized by a sensitivity of 100% and a specificity of 92%. If PCR is considered as a reference method, then the sensitivity of ICA is 93% and the specificity is 92%. The proposed ICA can be implemented in one stage without the use of any additional reactants or devices. The testing results can be obtained in 10 min and detected visually. It provides significant improvement in GLRaV-3 detection, and the presented approach can be transferred for the development of test systems for other grape wine pathogens.


Closteroviridae/pathogenicity , Immunoassay/methods
17.
Anal Bioanal Chem ; 410(7): 1903-1910, 2018 Mar.
Article En | MEDLINE | ID: mdl-29353430

The format of an immunochromatographic multiassay is first proposed with native antisera and a universal conjugate of antispecies antibodies with gold nanoparticles. This format allows (1) the exclusion of purification and conjugation stages for specific antibodies and (2) significant reduction of the concentration of specific antibodies in the system. The independent use of specific antibodies and a conjugated marker provided a low detection limit and high signal intensity. The proposed format was implemented for the simultaneous detection of two herbicides. The instrumental limits for the detection of atrazine and chlorsulfuron were 0.1 and 0.7 ng/mL, respectively, and the analysis time was 20 min. The suitability of the test system for monitoring these herbicides in nontreated apple and blackcurrant juices is shown. The assay technique is simple, sensitive, and easily transferrable to any other antigen. Graphical abstract The proposed format of the immunochromatographic multiassay is based on the use of native antisera and a universal conjugate of antispecies antibodies with gold nanoparticles. In this way purification and conjugation stages for specific antibodies are excluded, and the concentrations of specific antibodies and the conjugated marker can be varied independently to obtain a low detection limit.


Atrazine/analysis , Chromatography, Affinity/instrumentation , Herbicides/analysis , Immune Sera/chemistry , Sulfonamides/analysis , Triazines/analysis , Animals , Chromatography, Affinity/methods , Equidae , Equipment Design , Food Analysis/instrumentation , Food Analysis/methods , Fruit and Vegetable Juices/analysis , Goats , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Rabbits , Reagent Strips/analysis
18.
Bioconjug Chem ; 28(11): 2737-2746, 2017 11 15.
Article En | MEDLINE | ID: mdl-28984436

This comprehensive study is related to gold nanoparticles (GNPs) conjugated with antibodies. The goal of the study is to determine the minimal concentration of antibodies for conjugate synthesis when the conjugates have high antigen-capturing activity. Two systems were studied: gold nanoparticles conjugated with monoclonal antibodies (mAb-GNP) specific to Helicobacter pylori and gold nanoparticles conjugated with polyclonal antibodies (pAb-GNP) specific to mouse immunoglobulins. Several conjugates were synthesized with different GNP-to-antibody molar ratios (from 1:1 to 1:245) through nondirectional and noncovalent immobilization on a surface of GNPs with a diameter of 25.3 ± 4.6 nm. The maximal antigen-capturing activities and equilibrium constants of the conjugates correlate with the formation of a constant hydrodynamic radius of the conjugates for mAb-GNP (GNP to antibody molar ratio 1:58) and with the stabilizing concentration by flocculation curves for pAb-GNP (GNP to antibody molar ratio 1:116). The application of the conjugates to the lateral flow immunoassay shows that the antibody concentrations used for the conjugation can be reduced (below the stabilizing concentration) without losing activity for the mAb-GNP conjugates. The findings highlight that the optimal concentration of antibodies immobilized on the surface of GNPs is not always equal to the stabilizing concentration determined by the flocculation curve.


Antibodies, Immobilized/chemistry , Gold/chemistry , Immunoconjugates/chemistry , Metal Nanoparticles/chemistry , Animals , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Helicobacter Infections/microbiology , Helicobacter pylori/immunology , Immunoconjugates/immunology , Immunoglobulins/immunology , Mice , Particle Size
19.
Anal Bioanal Chem ; 409(7): 1915-1927, 2017 Mar.
Article En | MEDLINE | ID: mdl-28012109

Early detection of potato infections is essential for effective disease management. The aim of this study was to develop a lateral flow immunoassay (LFIA) for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani. Polyclonal antibodies specific to different strains of Dickeya were obtained from rabbits after immunization with bacterial cells of D. dianthicola and D. solani. Enzyme-linked immunosorbent assay testing with use of a wide range of bacterial species showed that the polyclonal antibodies detect closely related strains of D. dianthicola and D. solani. Cross-reactivity with widespread pathogenic bacteria (nine species) and saprophytes of healthy potato plants was not detected. The LFIA based on the obtained antibodies and gold nanoparticles with average diameter of 20 nm was developed. Under optimized conditions, the LFIA method enabled the analysis of potato extracts within 10 min, with a visual limit of detection of 1 × 105 CFU/ml for leaves and 4 × 105 CFU/ml for tubers. The assay was tested on potato stem and tuber extracts, and the results of the LFIA were confirmed in 92.1% of samples using the real-time polymerase chain reaction. The findings confirmed that the developed LFIA could be used for monitoring blackleg infection without the need for special equipment or skills. Graphical Abstract The developed lateral flow immunoassay is an efficient tool for rapid detection of a serious potato disease, potato blackleg, caused by Dickeya dianthicola and Dickeya solani.


Gammaproteobacteria/pathogenicity , Immunoassay/methods , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Antibodies/immunology , Enzyme-Linked Immunosorbent Assay , Gammaproteobacteria/immunology , Microscopy, Electron, Transmission
20.
J Immunoassay Immunochem ; 36(1): 80-90, 2015.
Article En | MEDLINE | ID: mdl-24579979

An immunochromatographic test system was developed for rapid detection of the levels of specific IgG antibodies to Brucella abortus lipopolysaccharide, as a tool for diagnosis of brucellosis in cattle. The pilot test strips were examined using blood sera from sick (78 samples) and healthy (35 samples) cows. The results obtained by immunochromatographic assay, using a portable optical densitometer for digital video detection, correlate well with the results obtained by immunoenzyme assay and are in agreement with the results of the disease diagnosis. The new test system allows detection of antibodies within 10 min and can be proposed as an alternative to the methods available for serodiagnosis of brucellosis.


Antibodies/immunology , Brucella abortus/immunology , Chromatography, Affinity , Photometry , Animals , Brucella abortus/cytology , Brucella abortus/growth & development , Cattle , Cells, Cultured , Lipopolysaccharides/immunology
...