Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Crit Rev Microbiol ; 49(1): 38-56, 2023 Feb.
Article En | MEDLINE | ID: mdl-35171731

Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.


Anti-Infective Agents , Biological Products , Photochemotherapy , Humans , Photochemotherapy/methods , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Photosensitizing Agents/pharmacology , Anti-Infective Agents/therapeutic use
2.
Braz. J. Pharm. Sci. (Online) ; 59: e22459, 2023. graf
Article En | LILACS | ID: biblio-1439495

Abstract Cervical cancer is a leading cause of death among women. The endocervical adenocarcinoma (ECA) represents an aggressive and metastatic type of cancer with no effective treatment options currently available. We evaluated the antitumoral and anti-migratory effects of hypericin (HYP) encapsulated on Pluronic F127 (F127/HYP) photodynamic therapy (PDT) against a human cell line derived from invasive cervical adenocarcinoma (HeLa) compared to a human epithelial cell line (HaCaT). The phototoxicity and cytotoxicity of F127/HYP were evaluated by the following assays: colorimetric assay, MTT, cellular morphological changes by microscopy and long-term cytotoxicity by clonogenic assay. In addition, we performed fluorescence microscopy to analyze cell uptake and subcellular distribution of F127/HYP, cell death pathway and reactive oxygen species (ROS) production. The PDT mechanism was determined with sodium azide and D-mannitol and cell migration by wound-healing assay. The treatment with F127/HYP promoted a phototoxic result in the HeLa cells in a dose-dependent and selective form. Internalization of F127/HYP was observed mainly in the mitochondria, causing cell death by necrosis and ROS production especially by the type II PDT mechanism. Furthermore, F127/HYP reduced the long-term proliferation and migration capacity of HeLa cells. Overall, our results indicate a potentially application of F127/HYP micelles as a novel approach for PDT with HYP delivery to more specifically treat ECA.


Adenocarcinoma/pathology , Poloxamer/analogs & derivatives , Photochemotherapy/classification , HeLa Cells/classification , Uterine Cervical Neoplasms/pathology , Sodium Azide/administration & dosage , Epithelial Cells/classification , Microscopy, Fluorescence/methods , Neoplasms/pathology
3.
Polymers (Basel) ; 14(19)2022 Oct 06.
Article En | MEDLINE | ID: mdl-36236138

Biomaterials that effectively act in biological systems, as in treatment and healing of damaged or lost tissues, must be able to mimic the properties of the body's natural tissues in its various aspects (chemical, physical, mechanical and surface). These characteristics influence cell adhesion and proliferation and are crucial for the success of the treatment for which a biomaterial will be required. In this context, the electrospinning process has gained prominence in obtaining fibers of micro- and nanometric sizes from polymeric solutions aiming to produce scaffolds for tissue engineering. In this manuscript, poly(vinylidene fluoride) (PVDF) was used as a polymeric matrix for the manufacture of piezoelectric scaffolds, exploring the formation of the ß-PVDF piezoelectric phase. Micro- and nanometric hydroxyapatite (HA) particles were incorporated as a dispersed phase in this matrix, aiming to produce multifunctional composite membranes also with bioactive properties. The results show that it is possible to produce membranes containing micro- and nanofibers of the composite by the electrospinning process. The HA particles show good dispersion in the polymer matrix and predominance of ß-PVDF phase. Also, the composite showed apatite growth on its surface after 21 days of immersion in simulated body fluid (SBF). Tests performed on human fibroblasts culture revealed that the electrospun membranes have low cytotoxicity attesting that the composite shows great potential to be used in biomedical applications as bone substitutions and wound healing.

4.
Photodiagnosis Photodyn Ther ; 39: 103016, 2022 Sep.
Article En | MEDLINE | ID: mdl-35840009

Methylene blue (MB) mediated photodynamic therapy (PDT) is an emerging treatment for different kinds of skin lesions and ulcers. Our case report aims to assess its potential in treating diabetic foot ulcers, venous leg ulcers, and pressure ulcers. Patients presented with complex chronic wounds larger than 40 cm2 with low healing potential. Once a week, patients had an aqueous formulation of MB at a concentration of 10 mg/mL (1% w/v) applied topically on their wounds, which were then irradiated with a light-emitting diode (LED) light source (660 nm, 3.8 J/cm2) with 9 mW/cm2 on tissue surface. Symptom improvement and recurrence rates were assessed with a long-term follow-up from 2018 to 2021. The results were satisfactory, with significant wound size reduction, and a decrease in aspects indicative of infection including odor, presence of exudates, and purulence. After methylene blue-mediated photodynamic therapy (MB-PDT), patients showed significantly reduced wound secretion, no signs of local reaction, and no adverse effects such as burning sensation, pain, itching, skin erythema, or general malaise.


Diabetic Foot , Photochemotherapy , Diabetic Foot/drug therapy , Humans , Methylene Blue/therapeutic use , Photochemotherapy/methods , Wound Healing
5.
J Photochem Photobiol B ; 215: 112103, 2021 Feb.
Article En | MEDLINE | ID: mdl-33383558

The antifungal application of photodynamic therapy (PDT) has been widely explored. According to superficial nature of tinea capitis and the facility of application of light sources, the use of nanoencapsulated hypericin in P-123 associated with PDT (P123-Hy-PDT) has been a poweful tool to treat this pathology. Thus, the aim of this study was to evaluate the efficiency of P123-Hy-PDT against planktonic cells and in a murine model of dermatophytosis caused by Microsporum canis. In vitro antifungal susceptibility and in vivo efficiency tests were performed, including a skin toxicity assay, analysis of clinical signs by evaluating score, and photoacoustic spectroscopy. In addition, tissue analyses by histopathology and levels of pro-inflammatory cytokines, such as quantitative and qualitative antifungal assays, were employed. The in vitro assays demonstrated antifungal susceptibility with 6.25 and 12.5 µmol/L P123-Hy-PDI; these experiments are the first that have used this treatment of animals. P123-Hyp-mediated PDT showed neither skin nor biochemical alteration in vivo; it was safe for dermatophytosis treatment. Additionally, the treatment revealed rapid improvement in clinical signs at the site of infection after only three treatment sessions, with a clinical score confirmed by photoacoustic spectroscopy. The mycological reduction occurred after six treatment sessions, with a statistically significant decrease compared with untreated infected animals. These findings showed that P123-Hy-PDT restored tissue damage caused by infection, a phenomenon confirmed by histopathological analysis and proinflammatory cytokine levels. Our results reveal for the first time that P123-Hy-PDT is a promising treatment for tinea capitis and tinea corporis caused by M. canis, because it showed rapid clinical improvement and mycological reduction without causing toxicity.


Nanostructures/chemistry , Perylene/analogs & derivatives , Photochemotherapy/methods , Poloxamer/analogs & derivatives , Tinea/drug therapy , Animals , Anthracenes , Capsules , Mice , Perylene/chemistry , Perylene/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Poloxamer/chemistry , Polymerization
6.
Pharm Dev Technol ; 26(2): 138-149, 2021 Feb.
Article En | MEDLINE | ID: mdl-33183099

Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) have been extensively studied for their use in film formation. Poloxamer 407 (P407) is a block copolymer that has thermo-responsive and surfactant properties when used in pharmaceutical systems. These polymers are already used in liquid or semi-solid systems for ocular and parenteral drug delivery. However, the effect of P407 presence in solid pharmaceutical films composed of different PVA:PVP ratios have not been investigated yet. Therefore, this work investigated the influence of P407 added to the binary polymer mixture of PVA and PVP for the development of solid films aiming for pharmaceutical applications. The rheological properties of dispersions were investigated, and films were prepared by solvent casting method using different P407:PVA:PVP ratios according to a factorial design 23 (plus center point). The mechanical and in vitro mucoadhesive properties of films, as well as the disintegration time were investigated. Systems presented high mechanical resistance, mucoadhesion, and disintegration timeless than 180 s. It was found that higher concentrations of PVA increase mechanical properties and decrease disintegration time, and higher proportions of PVP and P407 increased mucoadhesion. The films could be classified as fast disintegrating films and represent a promising alternative for modifying drug delivery and pharmaceutical applications.


Drug Delivery Systems , Poloxamer/chemistry , Polyvinyl Alcohol/chemistry , Povidone/chemistry , Adhesiveness , Excipients/chemistry , Mucous Membrane/metabolism , Polymers/chemistry , Rheology , Solvents/chemistry , Surface-Active Agents/chemistry
7.
Life Sci ; 255: 117858, 2020 Aug 15.
Article En | MEDLINE | ID: mdl-32497635

At present, cervical cancer is the fourth leading cause of cancer among women worldwide with no effective treatment options. In this study we aimed to evaluate the efficacy of hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) photodynamic therapy (PDT) in a comprehensive panel of human cervical cancer-derived cell lines, including HeLa (HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and 18-positive), and C33A (HPV-negative), compared to a nontumorigenic human epithelial cell line (HaCaT). Were investigated: (i) cell cytotoxicity and phototoxicity, cellular uptake and subcellular distribution; (ii) cell death pathway and cellular oxidative stress; (iii) migration and invasion. Our results showed that HYP/P123 micelles had effective and selective time- and dose-dependent phototoxic effects on cervical cancer cells but not in HaCaT. Moreover, HYP/P123 micelles accumulated in endoplasmic reticulum, mitochondria and lysosomes, resulting in photodynamic cell death mainly by necrosis. HYP/P123 induced cellular oxidative stress mainly via type II mechanism of PDT and inhibited cancer cell migration and invasion mainly via MMP-2 inhibition. Taken together, our results indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat cervical cancers through PDT, suggesting they are worthy for in vivo preclinical evaluations.


Antineoplastic Agents/administration & dosage , Nanoparticles , Perylene/analogs & derivatives , Photochemotherapy/methods , Uterine Cervical Neoplasms/drug therapy , Anthracenes , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Dose-Response Relationship, Drug , Drug Delivery Systems , Female , HeLa Cells , Humans , Micelles , Neoplasm Invasiveness , Oxidative Stress/drug effects , Perylene/administration & dosage , Perylene/pharmacology , Poloxalene/chemistry , Time Factors , Uterine Cervical Neoplasms/pathology
8.
Photodiagnosis Photodyn Ther ; 30: 101737, 2020 Jun.
Article En | MEDLINE | ID: mdl-32201214

Photoinactivation is a promising technique for Staphylococcus aureus control. This microorganism causes foodborne diseases (DTAs) and forms biofilms that are highly resistant and difficult to eradicate. Thus, the aim of this study was to evaluate the photodynamic activity of hypericin (HYP) in polymeric nanoparticles (Pluronic® P123) against S. aureus planktonic and biofilm cells. Planktonic cells and biofilms of S. aureus (ATCC 25923) were subjected to photoinactivation using low-power orange LED (0.3 mW/cm²) with different HYP formulation concentrations in Pluronic® P123. The P123 molar ratios were 2.5 (HYP/P123-2.5) and 10 (HYP/P123-10), respectively. The treatment times for planktonic cells were proposed by a mixture design, and bacterial photoinactivation was observed in concentrations of 12.5 to 3.12 µmol/L for HYP/P123-2.5 and reductions of ∼ 4.0 log CFU/mL in 12.5 to 0.78 µmol/L for HYP/P123-10. For biofilms, 30 min of darkness and 30 min of illumination were used. Maximum reductions were similar for both formulations and corresponded to approximately 0.9 log CFU/cm². It was concluded that photoinactivation with longer lighting times was effective against planktonic cells and could be potentially applied to control S. aureus.


Nanoparticles , Photochemotherapy , Anthracenes , Biofilms , Perylene/analogs & derivatives , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Staphylococcus aureus
9.
Anticancer Agents Med Chem ; 20(11): 1352-1367, 2020.
Article En | MEDLINE | ID: mdl-30387402

BACKGROUND: Breast cancer is the most relevant type of cancer and the second cause of cancer- related deaths among women in general. Currently, there is no effective treatment for breast cancer although advances in its initial diagnosis and treatment are available. Therefore, the value of novel anti-tumor therapeutic modalities remains an immediate unmet need in clinical practice. Following our previous work regarding the properties of the Pluronics with different photosensitizers (PS) for photodynamic therapy (PDT), in this study we aimed to evaluate the efficacy of supersaturated hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) against breast cancer cells (MCF-7) and non-tumorigenic breast cells (MCF-10A). METHODS: Cell internalization and subcellular distribution of HYP/P123 was confirmed by fluorescence microscopy. The phototoxicity and citototoxicity of HYP/P123 was assessed by trypan blue exclusion assay in the presence and absence of light. Long-term cytotoxicity was performed by clonogenic assay. Cell migration was determined by the wound-healing assay. Apoptosis and necrosis assays were performed by annexin VFITC/ propidium Iodide (PI) by fluorescence microscopy. RESULTS: Our results showed that HYP/P123 micelles had high stability and high rates of binding to cells, which resulted in the selective internalization in MCF-7, indicating their potential to permeate the membrane of these cells. Moreover, HYP/P123 micelles accumulated in mitochondria and endoplasmic reticulum organelles, resulting in the photodynamic cell death by necrosis. Additionally, HYP/P123 micelles showed effective and selective time- and dose dependent phototoxic effects on MCF-7 cells but little damage to MCF-10A cells. HYP/P123 micelles inhibited the generation of cellular colonies, indicating a possible capability to prevent the recurrence of breast cancer. We also demonstrated that HYP/P123 micelles inhibit the migration of tumor cells, possibly by decreasing their ability to form metastases. CONCLUSION: Taken together, the results presented here indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat human breast cancers through photodynamic therapy, suggesting they are worthy for in vivo preclinical evaluations.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Delivery Systems , Nanoparticles/chemistry , Perylene/analogs & derivatives , Photochemotherapy , Photosensitizing Agents/pharmacology , Poloxalene/pharmacology , Anthracenes , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Screening Assays, Antitumor , Female , Humans , Micelles , Molecular Structure , Perylene/chemistry , Perylene/pharmacology , Photosensitizing Agents/chemistry , Poloxalene/chemistry , Structure-Activity Relationship
10.
Nat Prod Res ; 33(8): 1196-1199, 2019 Apr.
Article En | MEDLINE | ID: mdl-29600721

Emodin reduction to emodin anthrone comprise one of three process steps involved in the hypericin synthesis, a powerful natural photosensitiser found in plants of the genus Hypericum. In this communication, an optimized protocol was established for emodin reduction enabling an efficient multigram preparation of emodin anthrone. A screening of reducing agent (SnCl2·2H2O and HClconc) under different reaction times was employed in micro-scale and monitored by electronic absorption spectroscopy technique. Data showed lower yields of emodin anthrone when some experimental conditions previously described in the literature were reproduce. However, using the optimized protocol for the emodin reduction these yields were overcoming, and a gram-scale supply experiment was reproducible for the preparation of 10 grams of emodin anthrone with excellent yield.


Emodin/analogs & derivatives , Emodin/chemistry , Hypericum/chemistry , Perylene/analogs & derivatives , Anthracenes , Anthraquinones/chemistry , Emodin/chemical synthesis , Perylene/chemical synthesis , Radiation-Sensitizing Agents/chemical synthesis , Reducing Agents
11.
Photochem Photobiol Sci ; 18(2): 487-494, 2019 Feb 13.
Article En | MEDLINE | ID: mdl-30534717

Chagas is a parasitic endemic disease caused by the protozoan Trypanosoma cruzi. It represents a strong threat to public health due to its strong resistance against commonly available drugs. We studied the in vitro ability to inactivate the trypomastigote form of this parasite using photodynamic inactivation of microorganisms (or antimicrobial Photodynamic Therapy, aPDT). For this, we chose to use the photosensitizer hypericin (Hyp) formulated in ethanol/water (1% v/v) and Hyp loaded in the dispersion of different aqueous nanocarrier systems. These included polymeric micelles of F-127 and P-123 (both Pluronic™ surfactants), and liposomal vesicles of phospholipid 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). These systems with Hyp had their activity compared against trypomastigote forms under light and in the dark. Hyp revealed a high level of effectiveness to eradicate protozoa in vitro. Samples at concentrations higher than 0.8 µmol L-1 of Hyp in Pluronic micelles showed efficacy even in the dark, with the EC50 around (6-8) µmol L-1. Therefore, Hyp/Pluronics can be used also as a chemotherapeutic agent. The best result for EC50 is at approximately 0.31 µmol L-1 for illuminated systems of Hyp in F-127 micelles. For Hyp in P-123 micelles under light, the results also led to a low EC50 value of 0.36 µmol L-1. The highest value of EC50 was 2.22 µmol L-1, which was found for Hyp/DPPC liposomes under light. For the Hyp-free (ethanol/water, 1% v/v)/illuminated group, the EC50 value was 0.37 µmol L-1, which also is a value that shows effectiveness. However, in free-form, Hyp is not protected against blood components, unlike when Hyp is loaded into the nanocarriers.


Drug Carriers/chemistry , Nanostructures/chemistry , Perylene/analogs & derivatives , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/radiation effects , Anthracenes , Micelles , Perylene/chemistry , Perylene/pharmacology , Poloxamer/analogs & derivatives , Poloxamer/chemistry
12.
J Photochem Photobiol B ; 170: 247-255, 2017 May.
Article En | MEDLINE | ID: mdl-28454049

The photodynamic properties of Hypericin (Hyp) may be used as an alternative treatment for malignancies of the lower gastrointestinal tract and for the prevention of surgical-site infection; however, its use in photodynamic therapy has been limited because of its poor hydrosolubility. Therefore, in order to improve its water solubility and its photodynamic effect, Hyp was encapsulated in Pluronic P123 (P123) and the photodynamic effects against intestinal and epidermal bacteria and against two lineages of intestinal colon carcinoma cells were investigated. Two response surface methods (RSM) were used to achieve the best in vitro photodynamic activity against Enterococcus faecalis, Escherichia coli and Staphylococcus aureus: in the first (full 23 RSM), Hyp concentration (HC*), incubation time (IT*) and LED-light time (LT*) were considered as the independent variables and E. faecalis inhibition as the dependent variable. In the second (full 32 RSM), Hyp concentration (HC*) and P123 concentration (CC*) were considered as independent variables and E. faecalis, E. coli and S. aureus inhibition as dependent variables. The optimized experimental conditions achieved were: Hyp concentration=37.5µmol/L; P123 concentration=21.5 µmol/L and 6.3J/cm2, which resulted in 2.86±0.12 and 2.30±0.31CFU log-reductions of E. faecalis and S. aureus. No effect was seen against E. coli. The cytotoxic effects of Hyp/P123 were also investigated for Caco-2 and HT-29 intestinal colon carcinoma cells at Hyp/P123 concentrations of 1, 0.5, 0.25 and 0.1µmol/L for Caco-2 cells and 4, 3, 2 and 1µmol/L for HT-29 cells. The cytotoxic concentrations for 50% (CC50) and 90% (CC90) of Hyp/P123 were 0.443 and 0.870µmol/L for Caco-2 cells and 1.4 and 2.84µmol/L for HT-29 cells. The P123 nanocarrier played a significant role in the permeation of Hyp through the cell membrane leading to significant cell death, and showed itself to be a promising photosensitizer for PDT that could be suitable for the treatment of colonic diseases since it is effective against positive Gram bacteria and intestinal colon carcinoma cells.


Anti-Infective Agents/chemistry , Micelles , Perylene/analogs & derivatives , Photosensitizing Agents/chemistry , Anthracenes , Anti-Infective Agents/pharmacology , Caco-2 Cells , Cell Survival/drug effects , Cell Survival/radiation effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Compounding , Enterococcus faecium/drug effects , Escherichia coli/drug effects , HT29 Cells , Humans , Light , Perylene/chemistry , Perylene/pharmacology , Perylene/toxicity , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/toxicity , Poloxalene/chemistry , Staphylococcus aureus/drug effects , Surface Properties
...