Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Neuroeng Rehabil ; 21(1): 70, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702813

Despite its rich history of success in controlling powered prostheses and emerging commercial interests in ubiquitous computing, myoelectric control continues to suffer from a lack of robustness. In particular, EMG-based systems often degrade over prolonged use resulting in tedious recalibration sessions, user frustration, and device abandonment. Unsupervised adaptation is one proposed solution that updates a model's parameters over time based on its own predictions during real-time use to maintain robustness without requiring additional user input or dedicated recalibration. However, these strategies can actually accelerate performance deterioration when they begin to classify (and thus adapt) incorrectly, defeating their own purpose. To overcome these limitations, we propose a novel adaptive learning strategy, Context-Informed Incremental Learning (CIIL), that leverages in situ context to better inform the prediction of pseudo-labels. In this work, we evaluate these CIIL strategies in an online target acquisition task for two use cases: (1) when there is a lack of training data and (2) when a drastic and enduring alteration in the input space has occurred. A total of 32 participants were evaluated across the two experiments. The results show that the CIIL strategies significantly outperform the current state-of-the-art unsupervised high-confidence adaptation and outperform models trained with the conventional screen-guided training approach, even after a 45-degree electrode shift (p < 0.05). Consequently, CIIL has substantial implications for the future of myoelectric control, potentially reducing the training burden while bolstering model robustness, and leading to improved real-time control.


Electromyography , Humans , Male , Adult , Female , Young Adult , Learning/physiology , Artificial Limbs , Machine Learning , Psychomotor Performance/physiology
2.
Bipolar Disord ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639725

INTRODUCTION: Alterations in motor activity are well-established symptoms of bipolar disorder, and time series of motor activity can be considered complex dynamical systems. In such systems, early warning signals (EWS) occur in a critical transition period preceding a sudden shift (tipping point) in the system. EWS are statistical observations occurring due to a system's declining ability to maintain homeostasis when approaching a tipping point. The aim was to identify critical transition periods preceding bipolar mood state changes. METHODS: Participants with a validated bipolar diagnosis were included to a one-year follow-up study, with repeated assessments of the participants' mood. Motor activity was recorded continuously by a wrist-worn actigraph. Participants assessed to have relapsed during follow-up were analyzed. Recognized EWS features were extracted from the motor activity data and analyzed by an unsupervised change point detection algorithm, capable of processing multi-dimensional data and developed to identify when the statistical property of a time series changes. RESULTS: Of 49 participants, four depressive and four hypomanic/manic relapses among six individuals occurred, recording actigraphy for 23.8 ± 0.2 h/day, for 39.8 ± 4.6 days. The algorithm detected change points in the time series and identified critical transition periods spanning 13.5 ± 7.2 days. For depressions 11.4 ± 1.8, and hypomania/mania 15.6 ± 10.2 days. CONCLUSION: The change point detection algorithm seems capable of recognizing impending mood episodes in continuous flowing data streams. Hence, we present an innovative method for forecasting approaching relapses to improve the clinical management of bipolar disorder.

3.
Sensors (Basel) ; 23(13)2023 Jun 30.
Article En | MEDLINE | ID: mdl-37447906

Assistive robots are tools that people living with upper body disabilities can leverage to autonomously perform Activities of Daily Living (ADL). Unfortunately, conventional control methods still rely on low-dimensional, easy-to-implement interfaces such as joysticks that tend to be unintuitive and cumbersome to use. In contrast, vocal commands may represent a viable and intuitive alternative. This work represents an important step toward providing a viable vocal interface for people living with upper limb disabilities by proposing a novel lightweight vocal command recognition system. The proposed model leverages the MobileNet2 architecture, augmenting it with a novel approach to the self-attention mechanism, achieving a new state-of-the-art performance for Keyword Spotting (KWS) on the Google Speech Commands Dataset (GSCD). Moreover, this work presents a new dataset, referred to as the French Speech Commands Dataset (FSCD), comprising 4963 vocal command utterances. Using the GSCD as the source, we used Transfer Learning (TL) to adapt the model to this cross-language task. TL has been shown to significantly improve the model performance on the FSCD. The viability of the proposed approach is further demonstrated through real-life control of a robotic arm by four healthy participants using both the proposed vocal interface and a joystick.


Robotics , Self-Help Devices , Speech Perception , Humans , Speech , Activities of Daily Living
4.
Front Physiol ; 14: 1151312, 2023.
Article En | MEDLINE | ID: mdl-37179829

The development of compact and energy-efficient wearable sensors has led to an increase in the availability of biosignals. To effectively and efficiently analyze continuously recorded and multidimensional time series at scale, the ability to perform meaningful unsupervised data segmentation is an auspicious target. A common way to achieve this is to identify change-points within the time series as the segmentation basis. However, traditional change-point detection algorithms often come with drawbacks, limiting their real-world applicability. Notably, they generally rely on the complete time series to be available and thus cannot be used for real-time applications. Another common limitation is that they poorly (or cannot) handle the segmentation of multidimensional time series. Consequently, the main contribution of this work is to propose a novel unsupervised segmentation algorithm for multidimensional time series named Latent Space Unsupervised Semantic Segmentation (LS-USS), which was designed to easily work with both online and batch data. Latent Space Unsupervised Semantic Segmentation addresses the challenge of multivariate change-point detection by utilizing an autoencoder to learn a 1-dimensional latent space on which change-point detection is then performed. To address the challenge of real-time time series segmentation, this work introduces the Local Threshold Extraction Algorithm (LTEA) and a "batch collapse" algorithm. The "batch collapse" algorithm enables Latent Space Unsupervised Semantic Segmentation to process streaming data by dividing it into manageable batches, while Local Threshold Extraction Algorithm is employed to detect change-points in the time series whenever the computed metric by Latent Space Unsupervised Semantic Segmentation exceeds a predefined threshold. By using these algorithms in combination, our approach is able to accurately segment time series data in real-time, making it well-suited for applications where timely detection of changes is critical. When evaluating Latent Space Unsupervised Semantic Segmentation on a variety of real-world datasets the Latent Space Unsupervised Semantic Segmentation systematically achieves equal or better performance than other state-of-the-art change-point detection algorithms it is compared to in both offline and real-time settings.

5.
IEEE J Biomed Health Inform ; 27(6): 2771-2781, 2023 06.
Article En | MEDLINE | ID: mdl-36067111

Internet-delivered psychological treatments (IDPT) are seen as an effective and scalable pathway to improving the accessibility of mental healthcare. Within this context, treatment adherence is an especially pertinent challenge to address due to the reduced interaction between healthcare professionals and patients. In parallel, the increase in regulations surrounding the use of personal data, such as the General Data Protection Regulation (GDPR), makes data minimization a core consideration for real-world implementation of IDPTs. Consequently, this work proposes a Self-Attention-based deep learning approach to perform automatic adherence forecasting, while only relying on minimally sensitive login/logout-timestamp data. This approach was tested on a dataset containing 342 patients undergoing Guided Internet-delivered Cognitive Behavioral Therapy (G-ICBT) treatment. Of these 342 patients, 101 (  âˆ¼ 30%) were considered non-adherent (dropout) based on the adherence definition used in this work (i.e. at least eight connections to the platform lasting more than a minute over 56 days). The proposed model achieved over 70% average balanced accuracy, after only 20 out of the 56 days (  âˆ¼ 1/3) of the treatment had elapsed. This study demonstrates that automatic adherence forecasting for G-ICBT, is achievable using only minimally sensitive data, thus facilitating the implementation of such tools within real-world IDPT platforms.


Cognitive Behavioral Therapy , Humans , Health Personnel , Internet , Treatment Outcome
6.
Digit Health ; 8: 20552076221128678, 2022.
Article En | MEDLINE | ID: mdl-36386244

This paper summarizes the information technology-related research findings after 5 years with the INTROducing Mental health through Adaptive Technology project. The aim was to improve mental healthcare by introducing new technologies for adaptive interventions in mental healthcare through interdisciplinary research and development. We focus on the challenges related to internet-delivered psychological treatments, emphasising artificial intelligence, human-computer interaction, and software engineering. We present the main research findings, the developed artefacts, and lessons learned from the project before outlining directions for future research. The main findings from this project are encapsulated in a reference architecture that is used for establishing an infrastructure for adaptive internet-delivered psychological treatment systems in clinical contexts. The infrastructure is developed by introducing an interdisciplinary design and development process inspired by domain-driven design, user-centred design, and the person based approach for intervention design. The process aligns the software development with the intervention design and illustrates their mutual dependencies. Finally, we present software artefacts produced within the project and discuss how they are related to the proposed reference architecture. Our results indicate that the proposed development process, the reference architecture and the produced software can be practical means of designing adaptive mental health care treatments in correspondence with the patients' needs and preferences. In summary, we have created the initial version of an information technology infrastructure to support the development and deployment of Internet-delivered mental health interventions with inherent support for data sharing, data analysis, reusability of treatment content, and adaptation of intervention based on user needs and preferences.

7.
PLoS One ; 17(1): e0262232, 2022.
Article En | MEDLINE | ID: mdl-35061801

Changes in motor activity are core symptoms of mood episodes in bipolar disorder. The manic state is characterized by increased variance, augmented complexity and irregular circadian rhythmicity when compared to healthy controls. No previous studies have compared mania to euthymia intra-individually in motor activity. The aim of this study was to characterize differences in motor activity when comparing manic patients to their euthymic selves. Motor activity was collected from 16 bipolar inpatients in mania and remission. 24-h recordings and 2-h time series in the morning and evening were analyzed for mean activity, variability and complexity. Lastly, the recordings were analyzed with the similarity graph algorithm and graph theory concepts such as edges, bridges, connected components and cliques. The similarity graph measures fluctuations in activity reasonably comparable to both variability and complexity measures. However, direct comparisons are difficult as most graph measures reveal variability in constricted time windows. Compared to sample entropy, the similarity graph is less sensitive to outliers. The little-understood estimate Bridges is possibly revealing underlying dynamics in the time series. When compared to euthymia, over the duration of approximately one circadian cycle, the manic state presented reduced variability, displayed by decreased standard deviation (p = 0.013) and augmented complexity shown by increased sample entropy (p = 0.025). During mania there were also fewer edges (p = 0.039) and more bridges (p = 0.026). Similar significant changes in variability and complexity were observed in the 2-h morning and evening sequences, mainly in the estimates of the similarity graph algorithm. Finally, augmented complexity was present in morning samples during mania, displayed by increased sample entropy (p = 0.015). In conclusion, the motor activity of mania is characterized by altered complexity and variability when compared within-subject to euthymia.


Affect/physiology , Bipolar Disorder/diagnosis , Motor Activity/physiology , Accelerometry , Adult , Aged , Algorithms , Bipolar Disorder/pathology , Case-Control Studies , Female , Hospitalization , Humans , Male , Mania/pathology , Middle Aged , Time Factors , Young Adult
8.
Article En | MEDLINE | ID: mdl-33591919

Within the field of electromyography-based (EMG) gesture recognition, disparities exist between the offline accuracy reported in the literature and the real-time usability of a classifier. This gap mainly stems from two factors: 1) The absence of a controller, making the data collected dissimilar to actual control. 2) The difficulty of including the four main dynamic factors (gesture intensity, limb position, electrode shift, and transient changes in the signal), as including their permutations drastically increases the amount of data to be recorded. Contrarily, online datasets are limited to the exact EMG-based controller used to record them, necessitating the recording of a new dataset for each control method or variant to be tested. Consequently, this paper proposes a new type of dataset to serve as an intermediate between offline and online datasets, by recording the data using a real-time experimental protocol. The protocol, performed in virtual reality, includes the four main dynamic factors and uses an EMG-independent controller to guide movements. This EMG-independent feedback ensures that the user is in-the-loop during recording, while enabling the resulting dynamic dataset to be used as an EMG-based benchmark. The dataset is comprised of 20 able-bodied participants completing three to four sessions over a period of 14 to 21 days. The ability of the dynamic dataset to serve as a benchmark is leveraged to evaluate the impact of different recalibration techniques for long-term (across-day) gesture recognition, including a novel algorithm, named TADANN. TADANN consistently and significantly ( [Formula: see text]) outperforms using fine-tuning as the recalibration technique.


Gestures , Virtual Reality , Algorithms , Electromyography , Humans , Neural Networks, Computer , Pattern Recognition, Automated
9.
Article En | MEDLINE | ID: mdl-32195238

Existing research on myoelectric control systems primarily focuses on extracting discriminative characteristics of the electromyographic (EMG) signal by designing handcrafted features. Recently, however, deep learning techniques have been applied to the challenging task of EMG-based gesture recognition. The adoption of these techniques slowly shifts the focus from feature engineering to feature learning. Nevertheless, the black-box nature of deep learning makes it hard to understand the type of information learned by the network and how it relates to handcrafted features. Additionally, due to the high variability in EMG recordings between participants, deep features tend to generalize poorly across subjects using standard training methods. Consequently, this work introduces a new multi-domain learning algorithm, named ADANN (Adaptive Domain Adversarial Neural Network), which significantly enhances (p = 0.00004) inter-subject classification accuracy by an average of 19.40% compared to standard training. Using ADANN-generated features, this work provides the first topological data analysis of EMG-based gesture recognition for the characterization of the information encoded within a deep network, using handcrafted features as landmarks. This analysis reveals that handcrafted features and the learned features (in the earlier layers) both try to discriminate between all gestures, but do not encode the same information to do so. In the later layers, the learned features are inclined to instead adopt a one-vs.-all strategy for a given class. Furthermore, by using convolutional network visualization techniques, it is revealed that learned features actually tend to ignore the most activated channel during contraction, which is in stark contrast with the prevalence of handcrafted features designed to capture amplitude information. Overall, this work paves the way for hybrid feature sets by providing a clear guideline of complementary information encoded within learned and handcrafted features.

10.
Sensors (Basel) ; 19(12)2019 Jun 24.
Article En | MEDLINE | ID: mdl-31238529

Wearable technology can be employed to elevate the abilities of humans to perform demanding and complex tasks more efficiently. Armbands capable of surface electromyography (sEMG) are attractive and noninvasive devices from which human intent can be derived by leveraging machine learning. However, the sEMG acquisition systems currently available tend to be prohibitively costly for personal use or sacrifice wearability or signal quality to be more affordable. This work introduces the 3DC Armband designed by the Biomedical Microsystems Laboratory in Laval University; a wireless, 10-channel, 1000 sps, dry-electrode, low-cost (∼150 USD) myoelectric armband that also includes a 9-axis inertial measurement unit. The proposed system is compared with the Myo Armband by Thalmic Labs, one of the most popular sEMG acquisition systems. The comparison is made by employing a new offline dataset featuring 22 able-bodied participants performing eleven hand/wrist gestures while wearing the two armbands simultaneously. The 3DC Armband systematically and significantly ( p < 0.05 ) outperforms the Myo Armband, with three different classifiers employing three different input modalities when using ten seconds or more of training data per gesture. This new dataset, alongside the source code, Altium project and 3-D models are made readily available for download within a Github repository.


Electromyography/methods , Machine Learning , Wearable Electronic Devices , Gestures , Humans , Signal Processing, Computer-Assisted
11.
IEEE Trans Neural Syst Rehabil Eng ; 27(4): 760-771, 2019 04.
Article En | MEDLINE | ID: mdl-30714928

In recent years, deep learning algorithms have become increasingly more prominent for their unparalleled ability to automatically learn discriminant features from large amounts of data. However, within the field of electromyography-based gesture recognition, deep learning algorithms are seldom employed as they require an unreasonable amount of effort from a single person, to generate tens of thousands of examples. This paper's hypothesis is that general, informative features can be learned from the large amounts of data generated by aggregating the signals of multiple users, thus reducing the recording burden while enhancing gesture recognition. Consequently, this paper proposes applying transfer learning on aggregated data from multiple users while leveraging the capacity of deep learning algorithms to learn discriminant features from large datasets. Two datasets comprised 19 and 17 able-bodied participants, respectively (the first one is employed for pre-training), were recorded for this work, using the Myo armband. A third Myo armband dataset was taken from the NinaPro database and is comprised ten able-bodied participants. Three different deep learning networks employing three different modalities as input (raw EMG, spectrograms, and continuous wavelet transform (CWT)) are tested on the second and third dataset. The proposed transfer learning scheme is shown to systematically and significantly enhance the performance for all three networks on the two datasets, achieving an offline accuracy of 98.31% for 7 gestures over 17 participants for the CWT-based ConvNet and 68.98% for 18 gestures over 10 participants for the raw EMG-based ConvNet. Finally, a use-case study employing eight able-bodied participants suggests that real-time feedback allows users to adapt their muscle activation strategy which reduces the degradation in accuracy normally experienced over time.


Deep Learning , Electromyography/methods , Gestures , Algorithms , Databases, Factual , Humans , Neural Networks, Computer , Transfer, Psychology , Wavelet Analysis , Wearable Electronic Devices
...