Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1150616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252661

RESUMEN

Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.

2.
Front Genet ; 13: 848663, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586571

RESUMEN

Magnesium (Mg) is the fourth most abundant element in the human body and plays the role of cofactor for more than 300 enzymatic reactions. In plants, Mg is involved in various key physiological and biochemical processes like growth, development, photophosphorylation, chlorophyll formation, protein synthesis, and resistance to biotic and abiotic stresses. Keeping in view the importance of this element, the present investigation aimed to explore the Mg contents diversity in the seeds of Turkish common bean germplasm and to identify the genomic regions associated with this element. A total of 183 common bean accessions collected from 19 provinces of Turkey were used as plant material. Field experiments were conducted according to an augmented block design during 2018 in two provinces of Turkey, and six commercial cultivars were used as a control group. Analysis of variance depicted that Mg concentration among common bean accessions was statistically significant (p < 0.05) within each environment, however genotype × environment interaction was non-significant. A moderate level (0.60) of heritability was found in this study. Overall mean Mg contents for both environments varied from 0.33 for Nigde-Dermasyon to 1.52 mg kg-1 for Nigde-Derinkuyu landraces, while gross mean Mg contents were 0.92 mg kg-1. At the province level, landraces from Bolu were rich while the landraces from Bitlis were poor in seed Mg contents respectively. The cluster constellation plot divided the studied germplasm into two populations on the basis of their Mg contents. Marker-trait association was performed using a mixed linear model (Q + K) with a total of 7,900 DArTseq markers. A total of six markers present on various chromosomes (two at Pv01, and one marker at each chromosome i.e., Pv03, Pv07, Pv08, Pv11) showed statistically significant association for seed Mg contents. Among these identified markers, the DArT-3367607 marker present on chromosome Pv03 contributed to maximum phenotypic variation (7.5%). Additionally, this marker was found within a narrow region of previously reported markers. We are confident that the results of this study will contribute significantly to start common bean breeding activities using marker assisted selection regarding improved Mg contents.

3.
PLoS One ; 13(10): e0205363, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30308006

RESUMEN

Turkey presents a great diversity of common bean landraces in farmers' fields. We collected 183 common bean accessions from 19 different Turkish geographic regions and 5 scarlet runner bean accessions to investigate their genetic diversity and population structure using phenotypic information (growth habit, and seed weight, flower color, bracteole shape and size, pod shape and leaf shape and color), geographic provenance and 12,557 silicoDArT markers. A total of 24.14% markers were found novel. For the entire population (188 accessions), the expected heterozygosity was 0.078 and overall gene diversity, Fst and Fis were 0.14, 0.55 and 1, respectively. Using marker information, model-based structure, principal coordinate analysis (PCoA) and unweighted pair-group method with arithmetic means (UPGMA) algorithms clustered the 188 accessions into two main populations A (predominant) and B, and 5 unclassified genotypes, representing 3 meaningful heterotic groups for breeding purposes. Phenotypic information clearly distinguished these populations; population A and B, respectively, were bigger (>40g/100 seeds) and smaller (<40g/100 seeds) seed-sized. The unclassified population was pure and only contained climbing genotypes with 100 seed weight 2-3 times greater than populations A and B. Clustering was mainly based on A: seed weight, B: growth habit, C: geographical provinces and D: flower color. Mean kinship was generally low, but population B was more diverse than population A. Overall, a useful level of gene and genotypic diversity was observed in this work and can be used by the scientific community in breeding efforts to develop superior common bean strains.


Asunto(s)
Pool de Genes , Phaseolus/anatomía & histología , Secuenciación Completa del Genoma/métodos , Genes de Plantas , Variación Genética , Phaseolus/genética , Fenotipo , Filogenia , Fitomejoramiento , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...