Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
J Circadian Rhythms ; 22: 2, 2024.
Article En | MEDLINE | ID: mdl-38617710

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

2.
J Circadian Rhythms ; 22: 1, 2024.
Article En | MEDLINE | ID: mdl-38617711

Circadian Biology intersects with diverse scientific domains, intricately woven into the fabric of organismal physiology and behavior. The rhythmic orchestration of life by the circadian clock serves as a focal point for researchers across disciplines. This retrospective examination delves into several of the scientific milestones that have fundamentally shaped our contemporary understanding of circadian rhythms. From deciphering the complexities of clock genes at a cellular level to exploring the nuances of coupled oscillators in whole organism responses to stimuli. The field has undergone significant evolution lately guided by genetics approaches. Our exploration here considers key moments in the circadian-research landscape, elucidating the trajectory of this discipline with a keen eye on scientific advancements and paradigm shifts.

3.
Cureus ; 16(1): e52207, 2024 Jan.
Article En | MEDLINE | ID: mdl-38327967

A systematic search was carried out through search platforms and specialized databases, such as Academic Google, PubMed, and Scopus, using thesauri: breast feeding, obesity, immunology, and human milk in English and Spanish, and those articles published from January 2000 to December 2021, in both languages. Only those reports that included quantitative data on immunological components in the milk of normal-weight and overweight women were considered. The PRISMA 2020 guides were used, and a total of 306 articles were reviewed, of which a total of 33 were included, according to the basic inclusion criteria. It was observed that in obese mothers, there is an increase in certain immune cells, such as B lymphocytes, cytotoxic T lymphocytes, and NK cells, and cytokines, such as IL-6 and IFN-γ; other alterations included the bacterial population and proteins with antibacterial action. Also, a decrease in growth factors such as TGF-ß and IFG-1 was documented in overweight women. Immunoglobulin concentrations did not show substantial changes. This brief review shows that maternal overweight is associated with changes in the biochemical and immunological parameters of milk.

4.
Bol. latinoam. Caribe plantas med. aromát ; 23(1): 122-131, ene. 2024. ilus, tab, graf
Article En | LILACS | ID: biblio-1554155

In tradition al Mexican medicine, plants from the Montanoa genus, family Asteraceae ( Montanoa tomentosa , Montanoa grandiflora , and Montanoa frutescens ) have been used to induce labor owing to their uterotonic properties like those produced by oxytocin (OXT). However, w hether infusions of these plants can activate hypothalamic OXT - producing neurons is unknown. To test this possibility, five independent groups of Wistar rats (n=4) were included: intact, vehicle, and three groups that received 50 mg/kg p.o. of M. tomentosa , M. grandiflora , and M. frutescens infusions, respectively. Ninety min after treatment, the brains were obtained and processed using double - labeled immunohistochemistry for Fos protein and oxytocin (Fos/OXT - ir). Rats that received Montanoa infusions had s ignificantly greater number of Fos/OXT - ir cells in the paraventricular (PVN) and supraoptic (SON) nuclei, with respect to intact and vehicle groups. These findings demonstrate that Montanoa infusions activated OXT neurons, an effect that may be related to the reported pharmacological properties.


En la medicina tradicional mexicana, plantas del género Montanoa , familia Asteraceae ( Montanoa tomentosa , Montanoa grandiflora y Montanoa frutescens ), se han utilizado para inducir el parto debido a sus propiedades uterotónicas, aparentemente similares a las producidas por la hormona oxitocina (OXT). Sin embargo, se desconoce si las infusiones de estas plantas pueden activar neuronas hipotalámicas productoras de OXT. Para probar esta posibilidad, se incluyeron cinco grupos independientes (n=4): intacto, vehículo y tres grupos que recibieron 50 mg/kg p.o. de infusiones de M. tomentosa , M. grandiflora , y M. frute scens , respectivamente. Noventa minutos después del tratamiento, los cerebros fueron obtenidos y procesados por doble marcaje de inmunohistoquímica para la proteína Fos y oxitocina (Fos/OXT - ir). Las ratas que recibieron infusiones de Montanoa aumentaron si gnificativamente el número de células Fos/OXT - ir en los núcleos paraventricular (PVN) y supraóptico (SON), respecto a los grupos intacto y vehículo. Estos hallazgos demuestran que las infusiones de Montanoa activan neuronas de OXT, lo que podría estar rela cionado con sus propiedades farmacológicas


Animals , Rats , Montanoa/metabolism , Montanoa/chemistry , Oxytocin , Oxytocin/pharmacology , Rats, Wistar , Neurons/metabolism
5.
Neuroscience ; 529: 37-53, 2023 10 01.
Article En | MEDLINE | ID: mdl-37591331

Accumulation of white adipose tissue (WAT) during obesity is associated with the development of chronic low-grade inflammation, a biological process known as lipoinflammation. Systemic and central lipoinflammation accumulates pro-inflammatory cytokines including IL-6, IL-1ß and TNF-α in plasma and also in brain, disrupting neurometabolism and cognitive behavior. Obesity-mediated lipoinflammation has been reported in brain regions of the mesocorticolimbic reward circuit leading to alterations in the perception and consumption of ultra-processed foods. While still under investigation, lipoinflammation targets two major outcomes of the mesocorticolimbic circuit during food reward: perception and motivation ("Wanting") and the pleasurable feeling of feeding ("Liking"). This review will provide experimental and clinical evidence supporting the contribution of obesity- or overnutrition-related lipoinflammation affecting the mesocorticolimbic reward circuit and enhancing food reward responses. We will also address neuroanatomical targets of inflammatory profiles that modulate food reward responses during obesity and describe potential cellular and molecular mechanisms of overnutrition linked to addiction-like behavior favored by brain lipoinflammation.


Food , Obesity , Humans , Obesity/complications , Obesity/psychology , Brain/physiology , Motivation , Reward , Feeding Behavior/physiology , Food Preferences/physiology
6.
Brain Res ; 1809: 148341, 2023 06 15.
Article En | MEDLINE | ID: mdl-37001722

Rabbits have remarkable nursing behavior: after parturition, does visit daily their pups for nursing only once with circadian periodicity. Before the nursing events, they present increased activity and arousal, which shift according to the timing of scheduled nursing, either during the day or night. Brain areas related to maternal behavior and neuroendocrine cells for milk secretion are also entrained. The daily return of the doe for nursing at approximately the same hour suggests a motivational drive with circadian periodicity. Previously, we reported the activation of the mesolimbic system at the time of nursing, but not 12 h before that. Aiming at a better understanding of the mechanism of this anticipatory behavior, we explored the participation of the limbic regions of the amygdala and the bed nucleus of the stria terminalis, as well as the possible activation of the hypothalamic-pituitaryadrenal axis, specifically the corticotropin-releasing factor cells in the hypothalamic paraventricular nucleus of does at different times before and after nursing. The medial and cortical amygdala, the bed nucleus of the stria terminalis, and corticotropin cells showed activation only after nursing. However, the central amygdala was also activated before nursing. We conclude that the medial and the cortical amygdala form part of the afferent olfactory pathway for entrainment, and the central amygdala participates in the anticipatory motivational circuit of the control of periodic nursing. The lack of activation of corticotropin cells before nursing is consistent with the possible harmful effects of the doe's high glucocorticoid levels on the developing pups.


Hypothalamus , Olfactory Cortex , Animals , Female , Rabbits , Hypothalamus/metabolism , Amygdala/metabolism , Periodicity , Olfactory Cortex/metabolism , Adrenocorticotropic Hormone/metabolism
7.
Sleep Sci ; 16(3): e329-e334, 2023 Sep.
Article En | MEDLINE | ID: mdl-38196767

Objective Nocturnal animals forage and eat during the night and sleep during the day. When food is available only for a short period during the day, animals develop a catabolic state and exhibit locomotor behavior before accessing food, termed food anticipatory activity . Consequently, there is a disruption in the sleep pattern. The present study aimed to explore how anticipatory arousal emerges under circadian exposure to a palatable meal (PM) and disrupts sleep architecture. Materials and Methods Adult male Wistar rats were implanted with electrodes for continuous sleep recording and housed under a light/dark 12/12-hour cycle with free access to food and water. After basal recordings, the rats had access to a PM during the light period for eight days. Results The anticipatory arousal started on the third day. On the eighth day, we found an increase in wake time and a decrease in the non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) times 45 minutes before the PM compared with the basal recordings. The REMS transitions (events from NREMS to REMS) showed a significant reduction during the light period of the eighth day of PM. In contrast, the number of NREMS transitions (events from wakefulness to NREMS) remained unchanged. Conclusion The results suggest that palatable food induces a motivational timing that leads the rat to wake by altering the sleep quota.

8.
Front Nutr ; 9: 867507, 2022.
Article En | MEDLINE | ID: mdl-35634367

During pregnancy the human fetus receives timed cues from the circadian rhythms of temperature, metabolites, and hormones from the mother. This influence is interrupted after parturition, the infant does not secrete melatonin and their circadian rhythms are still immature. However, evolution provided the solution to this problem. The newborn can continue receiving the mother's timed cues through breastmilk. Colostrum, transitional, and mature human milk are extraordinary complex biofluids that besides nutrients, contain an array of other non-nutritive components. Upon birth the first milk, colostrum, is rich in bioactive, immunological factors, and in complex oligosaccharides which help the proper establishment of the microbiome in the gut, which is crucial for the infants' health. Hormones, such as glucocorticoids and melatonin, transfer from the mother's plasma to milk, and then the infant is exposed to circadian cues from their mother. Also, milk components of fat, proteins, amino acids, and endogenous cannabinoids, among others, have a markedly different concentration between day and night. In the present review, we give an overview of nutritive and non-nutritive components and their daily rhythms in human milk and explore their physiological importance for the infant. Finally, we highlight some interventions with a circadian approach that emphasize the importance of circadian rhythms in the newborn for their survival, proper growth, and development. It is estimated that ~600,000 deaths/year are due to suboptimal breastfeeding. It is advisable to increase the rate of exclusive breastfeeding, during the day and night, as was established by the evolution of our species.

9.
Brain Res ; 1781: 147815, 2022 04 15.
Article En | MEDLINE | ID: mdl-35131285

The conditioned place preference (CPP) paradigm has been employed in behavioral studies to investigate the responses to an environment where a reinforcing event occurs. It is applied to reveal incentive motivational responses to reward-related stimuli. It is standardized and widely applied in mice and rats, two of the most common species of laboratory animals. However, no studies using the CPP protocol have been performed in rabbits, even though this animal model is commonly used in pharmacological and behavioral research. There are important physiological and behavioral differences between rodents and rabbits. For example, rodents are spontaneous ovulators while rabbits are induced ovulators. In addition, lactation in the rabbit is circadian, which is unique among mammals. The present investigation aims to establish whether rabbits can be conditioned by using a food-induced CPP protocol in subjects with caloric restriction. Adult female rabbits were subjected to a three-compartment CPP protocol. The food produced place preference, demonstrating for the first time that rabbits can be conditioned using the CPP paradigm opening a new field of opportunities for behavioral studies of positive affective states in a species with important behavioral and physiological differences from rodents.


Conditioning, Classical , Reward , Animals , Disease Models, Animal , Female , Food Preferences , Humans , Mammals , Mice , Motivation , Rabbits , Rats
10.
Front Pediatr ; 9: 744104, 2021.
Article En | MEDLINE | ID: mdl-34746058

The first 1,000 days in the life of a human being are a vulnerable stage where early stimuli may program adverse health outcomes in future life. Proper maternal nutrition before and during pregnancy modulates the development of the fetus, a physiological process known as fetal programming. Defective programming promotes non-communicable chronic diseases in the newborn which might be prevented by postnatal interventions such as breastfeeding. Breast milk provides distinct bioactive molecules that contribute to immune maturation, organ development, and healthy microbial gut colonization, and also secures a proper immunological response that protects against infection and inflammation in the newborn. The gut microbiome provides the most critical immune microbial stimulation in the newborn in early life, allowing a well-trained immune system and efficient metabolic settings in healthy subjects. Conversely, negative fetal programming by exposing mothers to diets rich in fat and sugar has profound effects on breast milk composition and alters the immune profiles in the newborn. At this new stage, newborns become vulnerable to immune compromise, favoring susceptibility to defective microbial gut colonization and immune response. This review will focus on the importance of breastfeeding and its immunological biocomponents that allow physiological immune programming in the newborn. We will highlight the importance of immunological settings by breastfeeding, allowing proper microbial gut colonization in the newborn as a window of opportunity to secure effective immunological response.

11.
Sci Rep ; 11(1): 19957, 2021 10 07.
Article En | MEDLINE | ID: mdl-34620909

The mechanisms underlying food anticipatory activity are still poorly understood. Here we explored the role of oxytocin (OT) and the protein c-Fos in the supraoptic nucleus (SON), medial (PVNm) and posterior (PVNp) regions of the paraventricular hypothalamic nucleus. Adult rats were assigned to one of four groups: scheduled restricted feeding (RF), ad libitum (AL), fasting after restricted feeding (RF-F), to explore the possible persistence of oscillations, or ad libitum fasted (AL-F). In the SON and in the PVNm, OT cells were c-Fos positive after food intake; in contrast, OT cells in the PVNp showed c-Fos activation in anticipation to food access, which persisted in RF-F subjects. We conclude that OT and non-OT cells of the SON and PVNm may play a role as recipients of the entraining signal provided by food intake, whereas those of the PVNp which contain motor preautonomic cells that project to peripheral organs, may be involved in the hormonal and metabolic anticipatory changes in preparation for food presentation and thus, may be part of a link between central and peripheral oscillators. In addition, due to their persistent activation they may participate in the neuronal network for the clock mechanism that leads to food entrainment.


Circadian Rhythm/physiology , Fasting/physiology , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Animals , Eating/physiology , Male , Rats, Wistar , Time Factors
12.
Front Neurosci ; 15: 636764, 2021.
Article En | MEDLINE | ID: mdl-33815041

In the newborn rabbit, the light entrainable circadian system is immature and once a day nursing provides the primary timing cue for entrainment. In advance of the mother's arrival, pups display food anticipatory activity (FAA), and metabolic and physiological parameters are synchronized to this daily event. Central structures in the brain are also entrained as indicated by expression of Fos and Per1 proteins, GFAP, a glial marker, and cytochrome oxidase activity. Under fasting conditions, several of these rhythmic parameters persist in the periphery and brain, including rhythms in the olfactory bulb (OB). Here we provide an overview of these physiological and neurobiological changes and focus on three issues, just beginning to be examined in the rabbit. First, we review evidence supporting roles for the organum vasculosum of lamina terminalis (OVLT) and median preoptic nucleus (MnPO) in homeostasis of fluid ingestion and the neural basis of arousal, the latter which also includes the role of the orexigenic system. Second, since FAA in association with the daily visit of the mother is an example of conditioned learning, we review evidence for changes in the corticolimbic system and identified nuclei in the amygdala and extended amygdala as part of the neural substrate responsible for FAA. Third, we review recent evidence supporting the role of oxytocinergic cells of the paraventricular hypothalamic nucleus (PVN) as a link to the autonomic system that underlies physiological events, which occur in preparation for the upcoming next daily meal. We conclude that the rabbit model has contributed to an overall understanding of food entrainment.

13.
Front Neurosci ; 14: 49, 2020.
Article En | MEDLINE | ID: mdl-32082116

When food is presented at a specific time of day subjects develop intense locomotor behavior before food presentation, termed food anticipatory activity (FAA). Metabolic and hormonal parameters, as well as neural structures also shift their rhythm according to mealtime. Food-entrained activity rhythms are thought to be driven by a distributed system of central and peripheral oscillators sensitive to food cues, but it is not well understood how they are organized for the expression of FAA. The hormone Oxytocin plays an important role in food intake, satiety and homeostatic glucose metabolism and although it is recognized that food is the main cue for food entrainment this hormone has not been implicated in FAA. Here we investigated the activity of oxytocinergic (OTergic) cells of the hypothalamus in relation to the timing of feeding in rabbit pups, a natural model of food entrainment. We found that OTergic cells of the supraoptic nucleus and the main body of the paraventricular nucleus (PVN) are activated after feeding which suggests that OT may be an entraining signal for food synchronization. Moreover, a detailed analysis of the PVN revealed that OTergic cells of the caudal PVN and a subpopulation in the dorsal part of the main body of this nucleus shows activation before the time of food but not 12 h later. Moreover this pattern persists in fasted subjects at the time of the previous scheduled time of nursing. The fact that those OTergic cells of the dorsal and caudal part of the PVN contain preautonomic cells that project to the adrenal, pancreas and liver perhaps may be related to the physiological changes in preparation for food ingestion, and synchronization of peripheral oscillators, which remains to be determined; perhaps they play a main role in the central oscillatory mechanism of FAA as their activity persists in fasted subjects at the time of the next feeding time.

14.
Acta Pharm ; 70(3): 387-397, 2020 Sep 01.
Article En | MEDLINE | ID: mdl-32074069

The aim of this study was to compare the effects of acute (a single injection) and chronic (21 consecutive days) treatments with chrysin 2, 4, and 8 µmol kg-1 on anxiety-like behavior and Fos immunoreactivity in the lateral septum nucleus (LSN), a structure that is involved in the regulation of anxiety, in male Wistar rats. These effects were compared with the clinically effective anxiolytic diazepam 7 µmol kg-1. The results showed that acute, but not chronic treatment, with 4 µmol kg-1 chrysin exerted anxiolytic- and anti- depressant-like effects with these effects being similar to that of diazepam. Also, none of the above-mentioned treatments did alter Fos immunoreactivity in the LSN, but a tendency towards the reduction of this variable was detected with chrysin 4 µmol kg-1 and diazepam 7 µmol kg-1. Altogether, results suggest that chrysin exerts anxiolytic-like effects, however, it can produce pharmacological tolerance after repeated use, similar to benzodiazepines.


Anxiety/drug therapy , Behavior, Animal/drug effects , Flavonoids/pharmacology , Septal Nuclei/drug effects , Animals , Anti-Anxiety Agents/administration & dosage , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/administration & dosage , Antidepressive Agents/pharmacology , Diazepam/pharmacology , Flavonoids/administration & dosage , Male , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar
15.
J Tradit Complement Med ; 10(1): 45-51, 2020 Jan.
Article En | MEDLINE | ID: mdl-31956557

BACKGROUND AND AIM: In Mexican traditional medicine, Montanoa tomentosa (Mt) has been used as a remedy for reproductive impairments and mood swings. In pre-clinical research, both the extract and some of its active metabolites have produced oxytocinergic-like effects on female reproductive organs; however, there are no detailed studies of its effects on mood swing and brain structures. The aim of this study, was to analyze the behavioral effects of acute administration of a Mt infusion on male rats, during the Open Field (OFT) and Forced Swim (FST) Tests, and their association with the activation of oxytocin (OXT) cells, indicated by Fos protein (Fos/OXT) in the paraventricular (PVN) and supraoptic nuclei (SON). EXPERIMENTAL PROCEDURE: 52 adult male Wistar rats were assigned to two conditions; with FST (n = 8), or without (n = 5). Each integrated condition included four groups [Control, Vehicle, Fluoxetine (Flx; 10 mg/kg), and Mt (50 mg/kg), p.o.]. RESULTS AND CONCLUSION: Mt and Flx treatment produced an anti-despair-like effect on the FST, but no significant changes in locomotor activity. Also, the Mt infusion -but not Flx-significantly increased the number of Fos/OXT cells in the PVN and SON, regardless of the condition, compared to the control and vehicle groups. These results show that Mt, but not Flx, produces an anti-despair-like effect that could be associated with the activation of OXT cells in PVN and SON. This study thus contributes to our knowledge of the pharmacological activity of Mt infusions, which could be a natural antidepressant agent with future clinical relevance.

16.
Physiol Behav ; 217: 112824, 2020 04 01.
Article En | MEDLINE | ID: mdl-31987893

When food is restricted daily to a fixed time, animals show uncoupled molecular, physiological and behavioral circadian rhythms from those entrained by light and controlled by the suprachiasmatic nucleus. The loci of the food-entrainable oscillator and the mechanisms by which rhythms emerge are unclear. Using animals entrained to the light-dark cycle, recent studies indicate that astrocytes in the suprachiasmatic nucleus play a key role in the regulation of circadian rhythms. However, it is unknown whether astrocytic cells can be synchronized by circadian restricted feeding. Studying the olfactory bulb (OB) of rabbit pups entrained to daily feeding, we hypothesized that the expression of glial fibrillary acidic protein (GFAP) and the morphology of GFAP-immunopositive cells change in synchrony with timing of feeding. By using pups fed at 1000 h or 2200 h, we found that GFAP protein expression in the OB changes with a nadir at feeding time and a peak 16 h after feeding. We also found that length of radial glia processes, the most abundant GFAP+ cell in the rabbit pup OB, shows a daily change also coupled to feeding time. These temporal changes of GFAP were expressed in anti-phase to the rhythms of locomotor activity and c-Fos immunoreactivity. The results indicate that GFAP expression and elongation-retraction of radial glia processes are coupled by feeding time and suggest that glia cells may play an important functional role in food entraining of the OB circadian oscillator.


Ependymoglial Cells , Olfactory Bulb , Animals , Circadian Rhythm , Feeding Behavior , Glial Fibrillary Acidic Protein , Motor Activity , Rabbits , Suprachiasmatic Nucleus
17.
J Neuroendocrinol ; 31(9): e12713, 2019 09.
Article En | MEDLINE | ID: mdl-30912179

The ventral tegmental area (VTA), together with the preoptic area, is part of a neural circuit necessary for the expression of maternal behaviour (MB); destruction of either area disrupts MB in postpartum rats. Central to the proposal of VTA activation are dopaminergic cells, for which the cell bodies lie in the VTA and project to forebrain structures. This mesolimbic system is a motivational circuit involved in rewarding behaviours such as sex and MB. Despite their recognised importance, surprisingly, unlike the preoptic area, there are no anatomical descriptions of the pattern of VTA activation or of the dopaminergic cell activation, specifically in relation to MB in the rat. In the present study, we explore the possible activation (as indicated by Fos protein via immunohistochemistry) of the anterior and medial portions of the VTA and in the dopaminergic cells in these regions, as well as in the medial preoptic area, in lactating rats, at postpartum day 7 (after a 12-hour mother/pups separation), and in dioestrous females. After 12 hours, mothers were perfused at that moment or after a 90 minutes of interaction, or not, with their pups. We found a strong significant Fos induction in both the preoptic area and in the anterior portion of VTA in dams that interacted with their pups. The number of dopaminergic cells that coexpressed Fos did not differ across groups. Additionally, we determined Fos and GABA colocalisation in the anterior part of the VTA and found dense GABAergic processes, possibly varicosities, in the area of increased Fos expression. The results of the present study support a proposed GABAergic pathway from medial preoptic area to VTA cells, critical for the expression of MB. Future experiments are warranted to explore the neurochemical identity of the Fos and no-Fos expressing cells that are recipients of GABAergic processes in the VTA, aiming to better understand the neural circuitry of the VTA in relation to MB.


Dopaminergic Neurons/physiology , Maternal Behavior/physiology , Ventral Tegmental Area/physiology , Animals , Female , GABAergic Neurons/physiology , Lactation , Oncogene Proteins v-fos/metabolism , Preoptic Area/physiology , Rats, Wistar , gamma-Aminobutyric Acid/physiology
18.
Behav Brain Res ; 360: 185-195, 2019 03 15.
Article En | MEDLINE | ID: mdl-30529405

In woman, surgical menopause is associated with anxiety and depression symptoms. Ovariectomy in rats has been proposed as an experimental model of surgical menopause, but its long-term effects on anxiety- and depression-like behaviors and relationship with cellular changes in specific brain structures are unknown. The effects of ovariectomy on anxiety- and despair-like behavior 1, 3, 6, 9, 12, and 15-weeks postovariectomy were evaluated. Fos-immunoreactivity was evaluated in the lateral septal nucleus (LSN). The effects were compared with rats in the proestrus-estrus and metestrus-diestrus phases of the ovarian cycle and with ovariectomized rats that received 17ß-estradiol (OVXE). Three weeks postovariectomy, the rats exhibited an increase in anxiety-like behavior compared with PE and OVXE groups. Decreases in the locomotor activity and time spent grooming and rearing were detected in all the ovariectomized rats. In the forced swim test, the rats exhibited an increase in immobility time 6-weeks postovariectomy compared with control groups. The Fos-immunoreactivity in the LSN was significantly lower in all groups of ovariectomized rats compared with control groups. These findings indicate that rats develop anxiety-like behavior 3-weeks postovariectomy. Six weeks postovariectomy, the rats also developed despair-like behavior, which was associated with a reduction of Fos immunoreactivity in the LSN. Long-term ovariectomy may be considered a useful tool for understanding the development of neurobiological changes associated with surgical menopause. This model may also be useful for evaluating potential anxiolytic and antidepressant effects of diverse substances to ameliorate typical emotional and affective disorders during surgical menopause in women.


Anxiety/etiology , Depression/etiology , Gene Expression Regulation/physiology , Ovariectomy/adverse effects , Proto-Oncogene Proteins c-fos/metabolism , Septal Nuclei/metabolism , Animals , Cell Count , Disease Models, Animal , Estradiol/pharmacology , Female , Locomotion/drug effects , Maze Learning , Rats , Rats, Wistar , Septal Nuclei/pathology , Statistics, Nonparametric , Swimming/psychology , Time Factors
19.
Oncol Lett ; 16(2): 1981-1990, 2018 Aug.
Article En | MEDLINE | ID: mdl-30008892

Period circadian regulator (Per)1 and Per2 genes are involved in the molecular mechanism of the circadian clock, and exhibit tumor suppressor properties. Several studies have reported a decreased expression of Per1, Per2 and Per3 genes in different types of cancer and cancer cell lines. Promoter methylation downregulates Per1, Per2 or Per3 expression in myeloid leukemia, breast, lung, and other cancer cells; whereas histone deacetylase inhibitors (HDACi) upregulate Per1 or Per3 expression in certain cancer cell lines. However, the transcriptional regulation of Per1 and Per2 in cancer cells by chromatin modifications is not fully understood. The present study aimed to determine whether HDACi regulate Per1 and Per2 expression in gastric cancer cell lines, and to investigate changes in chromatin modifications in response to HDACi. Treatment of KATO III and NCI-N87 human gastric cancer cells with sodium butyrate (NaB) or Trichostatin A (TSA) induced Per1 and Per2 mRNA expression in a dose-dependent manner. Chromatin immunoprecipitaion assays revealed that NaB and TSA decreased lysine 9 trimethylation on histone H3 (H3K9me3) at the Per1 promoter. TSA, but not NaB increased H3K9 acetylation at the Per2 promoter. It was also observed that binding of Sp1 and Sp3 to the Per1 promoter decreased following NaB treatment, whereas Sp1 binding increased at the Per2 promoter of NaB- and TSA-treated cells. In addition, Per1 promoter is not methylated in KATO III cells, while Per2 promoter was methylated, although NaB, TSA, and 5-Azacytidine do not change the methylated CpGs analyzed. In conclusion, HDACi induce Per1 and Per2 expression, in part, through mechanisms involving chromatin remodeling at the proximal promoter of these genes; however, other indirect mechanisms triggered by these HDACi cannot be ruled out. These findings reveal a previously unappreciated regulatory pathway between silencing of Per1 gene by H3K9me3 and upregulation of Per2 by HDACi in cancer cells.

20.
Article En | MEDLINE | ID: mdl-29881373

In mammals, the suprachiasmatic nucleus (SCN), the master circadian clock, is mainly synchronized to the environmental light/dark cycle. SCN oscillations are maintained by a molecular clockwork in which certain genes, Period 1-2, Cry1-2, Bmal1, and Clock, are rhythmically expressed. Disruption of these genes leads to a malfunctioning clockwork and behavioral and physiological rhythms are altered. In addition to synchronization of circadian rhythms by light, when subjects are exposed to food for a few hours daily, behavioral and physiological rhythms are entrained to anticipate mealtime, even in the absence of the SCN. The presence of anticipatory rhythms synchronized by food suggests the existence of an SCN-independent circadian pacemaker that might be dependent on clock genes. Interestingly, rabbit pups, unable to perceive light, suckle milk once a day, which entrains behavioral rhythms to anticipate nursing time. Mutations of clock genes, singly or in combination, affect diverse rhythms in brain activity and physiological processes, but anticipatory behavior and physiology to feeding time remains attenuated or unaffected. It had been suggested that compensatory upregulation of paralogs or subtypes genes, or even non-transcriptional mechanisms, are able to maintain circadian oscillations entrained to mealtime. In the present mini-review, we evaluate the current state of the role played by clock genes in meal anticipation and provide evidence for rabbit pups as a natural model of food-anticipatory circadian behavior.

...