Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
J Environ Manage ; 345: 118696, 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37549639

Invasive alien species have widespread impacts on native biodiversity and ecosystem services. Since the number of introductions worldwide is continuously rising, it is essential to prevent the entry, establishment and spread of new alien species through a systematic examination of future potential threats. Applying a three-step horizon scanning consensus method, we evaluated non-established alien species that could potentially arrive, establish and cause major ecological impact in Spain within the next 10 years. Overall, we identified 47 species with a very high risk (e.g. Oreochromis niloticus, Popillia japonica, Hemidactylus frenatus, Crassula helmsii or Halophila stipulacea), 61 with high risk, 93 with moderate risk, and 732 species with low risk. Many of the species categorized as very high or high risk to Spanish biodiversity are either already present in Europe and neighbouring countries or have a long invasive history elsewhere. This study provides an updated list of potential invasive alien species useful for prioritizing efforts and resources against their introduction. Compared to previous horizon scanning exercises in Spain, the current study screens potential invaders from a wider range of terrestrial, freshwater, and marine organisms, and can serve as a basis for more comprehensive risk analyses to improve management and increase the efficiency of the early warning and rapid response framework for invasive alien species. We also stress the usefulness of measuring agreement and consistency as two different properties of the reliability of expert scores, in order to more easily elaborate consensus ranked lists of potential invasive alien species.


Ecosystem , Introduced Species , Spain , Reproducibility of Results , Biodiversity
2.
Int J Parasitol ; 53(4): 185-196, 2023 04.
Article En | MEDLINE | ID: mdl-36736608

The genus Karyolysus was originally proposed to accommodate blood parasites of lacertid lizards in Western Europe. However, recent phylogenetic analyses suggested an inconclusive taxonomic position of these parasites of the order Adeleorina based on the available genetic information. Inconsistencies between molecular phylogeny, morphology, and/or life cycles can reflect lack of enough genetic information of the target group. We therefore surveyed 28 localities and collected blood samples from 828 lizards of 23 species including lacertids, skinks, and geckoes in the western Mediterranean, North Africa, and Macaronesia, where species of Karyolysus and other adeleorine parasites have been described. We combined molecular and microscopic methods to analyze the samples, including those from the host type species and the type locality of Karyolysus bicapsulatus. The phylogenetic relationship of these parasites was analyzed based on the 18S rRNA gene and the co-phylogenetic relationship with their vertebrate hosts was reconstructed. We molecularly detected adeleorine parasites in 37.9% of the blood samples and found 22 new parasite haplotypes. A phylogenetic reconstruction with 132 sequences indicated that 20 of the newly detected haplotypes clustered in a well-supported clade with another 18 sequences that included Karyolysus galloti and Karyolysus lacazei. Morphological evidence also supported that K. bicapsulatus clustered in this monophyletic clade. These results supported the taxonomic validity of the genus. In addition, we found some parasite haplotypes that infected different lizard host genera with ancient diverging histories, which suggested that Karyolysus is less host-specific than other blood parasites of lizards in the region. A co-phylogenetic analysis supported this interpretation because no significant co-speciation signal was shown between Karyolysus and lizard hosts.


Eucoccidiida , Lizards , Parasites , Animals , Phylogeny , Lizards/parasitology , Eucoccidiida/genetics , Genetic Variation
3.
Conserv Physiol ; 6(1): coy066, 2018.
Article En | MEDLINE | ID: mdl-30546907

Consequences of human actions like global warming, spread of exotic species or resource consumption are pushing species to extinction. Even species considered to be at low extinction risk often show signs of local declines. Here, we evaluate the impact of eucalypt plantations, the best-known exotic tree species worldwide and its interaction with temperature and predators on amphibian development, growth, antipredator responses and physiology. For this purpose, we applied a fully factorial experiment crossing two types of leaf litter (native oak or eucalypt), two temperatures (15 and 20°C) and presence/absence of native predators. We found that leachates of eucalypt leaf litter reduced amphibian development and growth, compromised their antipredator responses and altered their metabolic rate. Increased temperature itself also posed serious alterations on development, growth, antioxidant ability and the immune status of tadpoles. However, the combined effects of eucalypt leaf litter and increased temperature were additive, not synergistic. Therefore, we show that non-lethal levels of a globally spread disruptor such as leachates from eucalypt leaf litter can seriously impact the life history and physiology of native amphibian populations. This study highlights the need to evaluate the status of wild populations exposed to human activities even if not at an obvious immediate risk of extinction, based on reliable stress markers, in order to anticipate demographic declines that may be hard to reverse once started. Replacing eucalypt plantations with native trees in protected areas would help improving the health of local amphibian larvae. In zones of economic interest, we would recommend providing patches of native vegetation around ponds and removing eucalypt leaf litter from pond basins during their dry phase.

4.
Int J Parasitol ; 48(9-10): 709-718, 2018 08.
Article En | MEDLINE | ID: mdl-29738739

Current and past parasite transmission may depend on the overlap of host distributions, potentially affecting parasite specificity and co-evolutionary processes. Nonetheless, parasite diversification may take place in sympatry when parasites are transmitted by vectors with low mobility. Here, we test the co-speciation hypothesis between lizard final hosts of the Family Lacertidae, and blood parasites of the genus Schellackia, which are potentially transmitted by haematophagous mites. The effects of current distributional overlap of host species on parasite specificity are also investigated. We sampled 27 localities on the Iberian Peninsula and three in northern Africa, and collected blood samples from 981 individual lizards of seven genera and 18 species. The overall prevalence of infection by parasites of the genus Schellackia was ∼35%. We detected 16 Schellackia haplotypes of the 18S rRNA gene, revealing that the genus Schellackia is more diverse than previously thought. Phylogenetic analyses showed that Schellackia haplotypes grouped into two main monophyletic clades, the first including those detected in host species endemic to the Mediterranean region and the second those detected in host genera Acanthodactylus, Zootoca and Takydromus. All but one of the Schellackia haplotypes exhibited a high degree of host specificity at the generic level and 78.5% of them exclusively infected single host species. Some host species within the genera Podarcis (six species) and Iberolacerta (two species) were infected by three non-specific haplotypes of Schellackia, suggesting that host switching might have positively influenced past diversification of the genus. However, the results supported the idea that current host switching is rare because there existed a significant positive correlation between the number of exclusive parasite haplotypes and the number of host species with current sympatric distribution. This result, together with significant support for host-parasite molecular co-speciation, suggests that parasites of the genus Schellackia co-evolved with their lizard hosts.


Apicomplexa/genetics , Apicomplexa/physiology , Lizards/parasitology , Protozoan Infections, Animal/parasitology , Animals , Genetic Speciation , Genetic Variation , Haplotypes , Host Specificity , Lizards/genetics
5.
Ecol Evol ; 8(2): 1031-1042, 2018 01.
Article En | MEDLINE | ID: mdl-29375776

Environmental conditions experienced by a species during its evolutionary history may shape the signals it uses for communication. Consequently, rapid environmental changes may lead to less effective signals, which interfere with communication between individuals, altering life history traits such as predator detection and mate searching. Increased temperature can reduce the efficacy of scent marks released by male lizards, but the extent to which this negative effect is related to specific biological traits and evolutionary histories across species and populations have not been explored. We experimentally tested how increased temperature affects the efficacy of chemical signals of high- and low-altitude populations of three lizard species that differ in their ecological requirements and altitudinal distributions. We tested the behavioral chemosensory responses of males from each species and population to male scent marks that had been incubated at one of two temperatures (cold 16°C or hot 20°C). In high-altitude populations of a mountain species (Iberolacerta monticola), the efficacy of chemical signals (i.e., latency time and number of tongue flicks) was lower after scent marks had been exposed to a hot temperature. The temperature that scent marks were incubated at did not affect the efficacy of chemical signals in a ubiquitous species (Podarcis muralis) or another mountain species (I. bonalli). Our results suggest that specific ecological traits arising through local adaptation to restricted distributions may be important in determining species vulnerability to climatic change.

6.
BMC Evol Biol ; 16(1): 135, 2016 Jun 21.
Article En | MEDLINE | ID: mdl-27329759

BACKGROUND: The optimal allocation of resources to sexual signals and other life history traits is usually dependent on an individual's condition, while variation in the expression of sexual traits across environments depends on the combined effects of local adaptation, mean condition, and phenotypic responses to environment-specific cues that affect resource allocation. A clear contrast can often be drawn between natural habitats and novel habitats, such as forest plantations and urban areas. In some species, males seem to change their sexual signals in these novel environments, but why this occurs and how it affects signal reliability is still poorly understood. RESULTS: The relative size of sexual traits and level of immune responses were significantly lower for male palmate newts Lissotriton helveticus caught in pine and eucalyptus plantations compared to those caught in native forests, but there was no habitat-dependent difference in body condition (n = 18 sites, 382 males). The reliability with which sexual traits signalled body condition and immune responses was the same in all three habitats. Finally, we conducted a mesocosm experiment in which males were maintained in pine, eucalypt or oak infused water for 21 days. Males in plantation-like water (pine or eucalypt) showed significantly lower immune responses but no change in body condition. This matches the pattern seen for field-caught males. Unlike field-caught males, however, there was no relationship between water type and relative sexual trait size. CONCLUSIONS: Pine and eucalyptus plantations are likely to be detrimental to male palmate newt because they are associated with reduced immune function and smaller sexual traits. This could be because ecological aspects of these novel habitats, such as high water turbidity or changes in male-male competition, drive selection for reduced investment into sexual traits. However, it is more probable that there are differences in the ease of acquisition, hence optimal allocation, of resources among habitats. Our mesocosm experiment also provides some evidence that water toxicity is a causal factor. Our findings offer insights into how plantations affect amphibian life histories, and how novel habitats might generate long-term selection for new resource allocation strategies in native species.


Ecosystem , Salamandridae/physiology , Sexual Behavior, Animal , Animals , Female , Forests , Male , Phenotype , Pinus , Salamandridae/immunology , Social Behavior
7.
J Chem Ecol ; 30(8): 1565-73, 2004 Aug.
Article En | MEDLINE | ID: mdl-15537159

We tested the ability of male slow-worms, Anguis fragilis, a limbless anguid lizard with secretive, semifossorial habits, to detect chemical associated with conspecifics by using a T-maze in the laboratory. Male slow-worms discriminated conspecific male and female scent deposits. Males selected the arm with female scent, suggesting that scent deposits may be used to locate potential mates. Also, male slow-worms did not avoid the chemicals of other males, suggesting that they are not territorial. However, males discriminated their own scent from those of other males, and spent more time exploring the arm with other male scent, which suggests that scent marks may bear information that could be used in future intrasexual social contexts. We conclude that discrimination of conspecifics based on scents may be more widespread than previously expected among lizards inhabiting visually restricted environments.


Discrimination Learning/physiology , Hindlimb/physiology , Lizards , Pheromones/physiology , Smell/physiology , Animals , Female , Male , Maze Learning/physiology , Pheromones/chemistry , Social Behavior , Stimulation, Chemical
...