Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(1): 2313-2318, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36534513

RESUMEN

Domain walls (DWs) in ferroelectric materials are interfaces that separate domains with different polarizations. Charged domain walls (CDWs) and neutral domain walls are commonly classified depending on the charge state at the DWs. CDWs are particularly attractive as they are configurable elements, which can enhance field susceptibility and enable functionalities such as conductance control. However, it is difficult to achieve CDWs in practice. Here, we demonstrate that applying mechanical stress is a robust and reproducible approach to generate CDWs. By mechanical compression, CDWs with a head/tail-to-body configuration were introduced in ultrathin BaTiO3, which was revealed by in-situ transmission electron microscopy. Finite element analysis shows strong strain fluctuation in ultrathin BaTiO3 under compressive mechanical stress. Molecular dynamics simulations suggest that the strain fluctuation is a critical factor in forming CDWs. This study provides insight into ferroelectric DWs and opens a pathway to creating CDWs in ferroelectric materials.

2.
Nature ; 604(7905): 273-279, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418634

RESUMEN

Metals with nanocrystalline grains have ultrahigh strengths approaching two gigapascals. However, such extreme grain-boundary strengthening results in the loss of almost all tensile ductility, even when the metal has a face-centred-cubic structure-the most ductile of all crystal structures1-3. Here we demonstrate that nanocrystalline nickel-cobalt solid solutions, although still a face-centred-cubic single phase, show tensile strengths of about 2.3 gigapascals with a respectable ductility of about 16 per cent elongation to failure. This unusual combination of tensile strength and ductility is achieved by compositional undulation in a highly concentrated solid solution. The undulation renders the stacking fault energy and the lattice strains spatially varying over length scales in the range of one to ten nanometres, such that the motion of dislocations is thus significantly affected. The motion of dislocations becomes sluggish, promoting their interaction, interlocking and accumulation, despite the severely limited space inside the nanocrystalline grains. As a result, the flow stress is increased, and the dislocation storage is promoted at the same time, which increases the strain hardening and hence the ductility. Meanwhile, the segment detrapping along the dislocation line entails a small activation volume and hence an increased strain-rate sensitivity, which also stabilizes the tensile flow. As such, an undulating landscape resisting dislocation propagation provides a strengthening mechanism that preserves tensile ductility at high flow stresses.


Asunto(s)
Cobalto , Metales , Cobalto/química , Ensayo de Materiales , Metales/química , Resistencia a la Tracción
3.
Nanoscale ; 13(34): 14330-14336, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34477716

RESUMEN

Ferroelectric nanoplates are attractive for applications in nanoelectronic devices. Defect engineering has been an effective way to control and manipulate ferroelectric properties in nanoscale devices. Defects can act as pinning centers for ferroelectric domain wall motion, altering the switching properties and domain dynamics of ferroelectrics. However, there is a lack of detailed investigation on the interactions between defects and domain walls in ferroelectric nanoplates due to the limitation of previous characterization techniques, which impedes the development of defect engineering in ferroelectric nanodevices. In this study, we applied in situ biasing transmission electron microscopy to explore how dislocation loops, which were judiciously introduced into barium titanate nanoplates via electron beam irradiation, affect the motion of ferroelectric domain walls. The results show that the motion was dramatically suppressed by these localized defects, because of the local strain fields induced by the defects. The pinning effect can be further enhanced by multiple domain walls embedded with defect arrays. These results indicate the possibility of manipulating domain switching in ferroelectric nanoplates via the electron beam.

4.
Nat Commun ; 12(1): 2095, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828086

RESUMEN

Failure of polarization reversal, i.e., ferroelectric degradation, induced by cyclic electric loadings in ferroelectric materials, has been a long-standing challenge that negatively impacts the application of ferroelectrics in devices where reliability is critical. It is generally believed that space charges or injected charges dominate the ferroelectric degradation. However, the physics behind the phenomenon remains unclear. Here, using in-situ biasing transmission electron microscopy, we discover change of charge distribution in thin ferroelectrics during cyclic electric loadings. Charge accumulation at domain walls is the main reason of the formation of c domains, which are less responsive to the applied electric field. The rapid growth of the frozen c domains leads to the ferroelectric degradation. This finding gives insights into the nature of ferroelectric degradation in nanodevices, and reveals the role of the injected charges in polarization reversal.

5.
Nat Mater ; 20(1): 62-67, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32895506

RESUMEN

Relaxor ferroelectrics, which can exhibit exceptional electromechanical coupling, are some of the most important functional materials, with applications ranging from ultrasound imaging to actuators. Since their discovery, their complex nanoscale chemical and structural heterogeneity has made the origins of their electromechanical properties extremely difficult to understand. Here, we employ aberration-corrected scanning transmission electron microscopy to quantify various types of nanoscale heterogeneities and their connection to local polarization in the prototypical relaxor ferroelectric system Pb(Mg1/3Nb2/3)O3-PbTiO3. We identify three main contributions that each depend on Ti content: chemical order, oxygen octahedral tilt and oxygen octahedral distortion. These heterogeneities are found to be spatially correlated with low-angle polar domain walls, indicating their role in disrupting long-range polarization and leading to nanoscale domain formation and the relaxor response. We further locate nanoscale regions of monoclinic-like distortion that correlate directly with Ti content and electromechanical performance. Through this approach, the connections between chemical heterogeneity, structural heterogeneity and local polarization are revealed, validating models that are needed to develop the next generation of relaxor ferroelectrics.

6.
Nat Commun ; 11(1): 4824, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973146

RESUMEN

Dielectric capacitors with high energy storage density (Wrec) and efficiency (η) are in great demand for high/pulsed power electronic systems, but the state-of-the-art lead-free dielectric materials are facing the challenge of increasing one parameter at the cost of the other. Herein, we report that high Wrec of 6.3 J cm-3 with η of 90% can be simultaneously achieved by constructing a room temperature M2-M3 phase boundary in (1-x)AgNbO3-xAgTaO3 solid solution system. The designed material exhibits high energy storage stability over a wide temperature range of 20-150 °C and excellent cycling reliability up to 106 cycles. All these merits achieved in the studied solid solution are attributed to the unique relaxor antiferroelectric features relevant to the local structure heterogeneity and antiferroelectric ordering, being confirmed by scanning transmission electron microscopy and synchrotron X-ray diffraction. This work provides a good paradigm for developing new lead-free dielectrics for high-power energy storage applications.

7.
Science ; 364(6437): 264-268, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31000659

RESUMEN

High-performance piezoelectrics benefit transducers and sensors in a variety of electromechanical applications. The materials with the highest piezoelectric charge coefficients (d 33) are relaxor-PbTiO3 crystals, which were discovered two decades ago. We successfully grew Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (Sm-PMN-PT) single crystals with even higher d 33 values ranging from 3400 to 4100 picocoulombs per newton, with variation below 20% over the as-grown crystal boule, exhibiting good property uniformity. We characterized the Sm-PMN-PT on the atomic scale with scanning transmission electron microscopy and made first-principles calculations to determine that the giant piezoelectric properties arise from the enhanced local structural heterogeneity introduced by Sm3+ dopants. Rare-earth doping is thus identified as a general strategy for introducing local structural heterogeneity in order to enhance the piezoelectricity of relaxor ferroelectric crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...