Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38399250

RESUMEN

The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.

2.
Proc Biol Sci ; 288(1962): 20211531, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34753356

RESUMEN

In addition to the morphophysiological changes experienced by amphibians during metamorphosis, they must also deal with a different set of environmental constraints when they shift from the water to the land. We found that Pithecopus azureus secretes a single peptide ([M + H]+ = 658.38 Da) at the developmental stage that precedes the onset of terrestrial behaviour. De novo peptide and cDNA sequencing revealed that the peptide, named PaT-2, is expressed in tandem and is a member of the tryptophyllins family. In silico studies allowed us to identify the position of reactive sites and infer possible antioxidant mechanisms of the compounds. Cell-based assays confirmed the predicted antioxidant activity in mammalian microglia and neuroblast cells. The potential neuroprotective effect of PaT-2 was further corroborated in FRET-based live cell imaging assays, where the peptide prevented lipopolysaccharide-induced ROS production and glutamate release in human microglia. In summary, PaT-2 is the first peptide expressed during the ontogeny of P. azureus, right before the metamorphosing froglet leaves the aquatic environment to occupy terrestrial habitats. The antioxidant activity of PaT-2, predicted by in silico analyses and confirmed by cell-based assays, might be relevant for the protection of the skin of P. azureus adults against increased O2 levels and UV exposure on land compared with aquatic environments.


Asunto(s)
Antioxidantes , Agua , Animales , Antioxidantes/análisis , Anuros/fisiología , Humanos , Mamíferos , Péptidos/análisis , Piel , Agua/análisis
3.
Drug Discov Today ; 21(5): 707-11, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26854425

RESUMEN

Constant changes in the structure of chromatin regulate gene expression. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Conceptually, the nucleosome was first identified as a therapeutic target 14 years ago, when small molecules started to be elegantly designed for nucleosomal DNA binding. Concomitantly, emergent drugs that target enzymes that affect chromatin structure have been developed to a treat myriad of diseases, such as cancer. Here, we discuss the development of more complex molecules, such as peptides and peptidomimetics, to directly target the nucleosome surface to modulate chromatin structure. This new strategy presents great challenges that need to be overcome to develop the exogenous nucleosome-binding molecules (eNBMs) as therapeutic agents.


Asunto(s)
Nucleosomas/efectos de los fármacos , Péptidos/farmacología , Peptidomiméticos/farmacología , ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA