Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Elife ; 122024 Apr 30.
Article En | MEDLINE | ID: mdl-38687678

Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.


Cell Membrane , Membrane Proteins , Proto-Oncogene Proteins c-ret , Proto-Oncogene Proteins c-ret/metabolism , Proto-Oncogene Proteins c-ret/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Membrane/metabolism , Signal Transduction , Protein Transport , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Proliferation , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/pathology
2.
bioRxiv ; 2024 Apr 03.
Article En | MEDLINE | ID: mdl-37425958

Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTK) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumour pheochromocytoma (PCC) can be caused by activating mutations of the RET receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumour suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability, and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.

3.
Bioessays ; 45(3): e2200196, 2023 03.
Article En | MEDLINE | ID: mdl-36567275

Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that produce 3-phosphorylated derivatives of phosphatidylinositol upon activation by various cues. These 3-phosphorylated lipids bind to various protein effectors to control many cellular functions. Lipid phosphatases such as phosphatase and tensin homolog (PTEN) terminate PI3K-derived signals and are critical to ensure appropriate signaling outcomes. Many lines of evidence indicate that PI3Ks and PTEN, as well as some specific lipid effectors are highly compartmentalized, either in plasma membrane nanodomains or in endosomal compartments. We examine the evidence for specific recruitment of PI3Ks, PTEN, and other related enzymes to membrane nanodomains and endocytic compartments. We then examine the hypothesis that scaffolding of the sources (PI3Ks), terminators (PTEN), and effectors of these lipid signals with a common plasma membrane nanodomain may achieve highly localized lipid signaling and ensure selective activation of specific effectors. This highlights the importance of spatial regulation of PI3K signaling in various physiological and disease contexts.


Phosphatidylinositol 3-Kinases , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology , PTEN Phosphohydrolase/metabolism , Phosphatidylinositols/metabolism , Cell Membrane/metabolism
4.
J Cell Biol ; 221(4)2022 04 04.
Article En | MEDLINE | ID: mdl-35238864

The epidermal growth factor (EGF) receptor (EGFR) controls many aspects of cell physiology. EGF binding to EGFR elicits the membrane recruitment and activation of phosphatidylinositol-3-kinase, leading to Akt phosphorylation and activation. Concomitantly, EGFR is recruited to clathrin-coated pits (CCPs), eventually leading to receptor endocytosis. Previous work uncovered that clathrin, but not receptor endocytosis, is required for EGF-stimulated Akt activation, and that some EGFR signals are enriched in CCPs. Here, we examine how CCPs control EGFR signaling. The signaling adaptor TOM1L1 and the Src-family kinase Fyn are enriched within a subset of CCPs with unique lifetimes and protein composition. Perturbation of TOM1L1 or Fyn impairs EGF-stimulated phosphorylation of Akt2 but not Akt1. EGF stimulation also triggered the TOM1L1- and Fyn-dependent recruitment of the phosphoinositide 5-phosphatase SHIP2 to CCPs. Thus, the recruitment of TOM1L1 and Fyn to a subset of CCPs underlies a role for these structures in the support of EGFR signaling leading to Akt activation.


Adaptor Proteins, Signal Transducing , Clathrin , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-fyn , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Clathrin/metabolism , Endocytosis , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Signal Transduction
5.
Methods Mol Biol ; 2251: 73-89, 2021.
Article En | MEDLINE | ID: mdl-33481232

The dynamic phosphorylation of phosphatidylinositol produces seven distinct but interconvertible phosphatidylinositol phosphates (PIPs). Each PIP exhibits specific enrichment in a subset of membrane compartments as a result of dynamic phosphorylation and dephosphorylation by lipid kinases and phosphatases, and/or by vesicle-mediated transport. Several PIPs are found within the plasma membrane, such as phosphatidylinositol-4-phosphate [PI(4)P], phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2], and phosphatidylinositol-3,4,5-trisphosphate (PIP3), and these control many aspects of cell physiology, including receptor signaling and membrane traffic. As a result, measurement of the cell surface abundance of these PIPs is a valuable resource to allow understanding of the regulation and function of these cell surface lipids. Here, we describe methods based on quantification of the localization of genetically encoded fluorescent PIP probes to the cell surface by either spinning disc confocal microscopy or total internal reflection fluorescence microscopy that allow detection of changes in cell surface levels of PI(4,5)P2, PI(3,4)P2, and PIP3. These methods can also be applied to the measurement of other PIPs or lipid species at the cell surface, and thus represent a useful resource for the study of the cell biology of PIPs.


Biosensing Techniques/methods , Cell Membrane/chemistry , Phosphatidylinositols/analysis , Animals , Cell Culture Techniques/methods , Cell Membrane/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Microscopy, Fluorescence/methods , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphotransferases/metabolism , Protein Transport/physiology
...