Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Neurol Neurosurg Psychiatry ; 95(5): 419-425, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-37989566

BACKGROUND: We investigated the association between changes in retinal thickness and cognition in people with MS (PwMS), exploring the predictive value of optical coherence tomography (OCT) markers of neuroaxonal damage for global cognitive decline at different periods of disease. METHOD: We quantified the peripapillary retinal nerve fibre (pRFNL) and ganglion cell-inner plexiform (GCIPL) layers thicknesses of 207 PwMS and performed neuropsychological evaluations. The cohort was divided based on disease duration (≤5 years or >5 years). We studied associations between changes in OCT and cognition over time, and assessed the risk of cognitive decline of a pRFNL≤88 µm or GCIPL≤77 µm and its predictive value. RESULTS: Changes in pRFNL and GCIPL thickness over 3.2 years were associated with evolution of cognitive scores, in the entire cohort and in patients with more than 5 years of disease (p<0.01). Changes in cognition were related to less use of disease-modifying drugs, but not OCT metrics in PwMS within 5 years of onset. A pRFNL≤88 µm was associated with earlier cognitive disability (3.7 vs 9.9 years) and higher risk of cognitive deterioration (HR=1.64, p=0.022). A GCIPL≤77 µm was not associated with a higher risk of cognitive decline, but a trend was observed at ≤91.5 µm in PwMS with longer disease (HR=1.81, p=0.061). CONCLUSIONS: The progressive retinal thinning is related to cognitive decline, indicating that cognitive dysfunction is a late manifestation of accumulated neuroaxonal damage. Quantifying the pRFNL aids in identifying individuals at risk of cognitive dysfunction.


Cognitive Dysfunction , Multiple Sclerosis , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retinal Ganglion Cells/pathology , Retina/pathology , Tomography, Optical Coherence/methods , Cognitive Dysfunction/complications , Atrophy/pathology
2.
Materials (Basel) ; 13(10)2020 May 21.
Article En | MEDLINE | ID: mdl-32455551

A novel continuous process of severe plastic deformation (SPD) named continuous close die forging (CCDF) is presented. The CCDF process combines all favorite advances of multidirectional forging and other SPD methods, and it can be easily scaled up for industrial use. Keeping constant both the cross section and the length of the sample, the new method promotes a refinement of the microstructure. The grain refinement and mechanical properties of commercially pure aluminum (AA1050) were studied as a function of the number of CCDF repetitive passes and the previous conditioning heat treatment. In particular, two different pre-annealing treatments were applied. The first one consisted of a reheating to 623 K (350 °C) for 1 h aimed at eliminating the effect of the deformation applied during the bar extrusion. The second pre-annealing consisted on a reheating to 903 K (630 °C) for 48 h plus cooling down to 573 K (300 °C) at 66 K/h. At this latter temperature, the material remained for 3 h prior to a final cooling to room temperature within the furnace, i.e., slow cooling rate. This treatment aimed at increasing the elongation and formability of the material. No visible cracking was detected in the workpiece of AA1050 processed up to 16 passes at room temperature after the first conditioning heat treatment, and 24 passes were able to be applied when the material was subjected to the second heat treatment. After processing through 16 passes for the low temperature pre-annealed samples, the microstructure was refined down to a mean grain size of 0.82 µm and the grain size was further reduced to 0.72 µm after 24 passes, applied after the high temperature heat treatment. Tensile tests showed the best mechanical properties after the high temperature pre-annealing and 24 passes of the novel CCDF method. A yield strength and ultimate tensile strength of 180 and 226 MPa, respectively, were obtained. Elongation to fracture was 18%. The microstructure and grain boundary nature are discussed in relation to the mechanical properties attained by the current ultrafine-grained (UFG) AA1050 processed by this new method.

3.
Materials (Basel) ; 13(3)2020 Jan 31.
Article En | MEDLINE | ID: mdl-32023894

Sheets of 5754-aluminum alloy processed by a modified repetitive corrugation and straightening (RCS) process were tested in order to measure their formability. For this purpose, forming limit curves were derived. They showed that the material forming capacity decreased after being processed by RCS. However, they kept good formability in the initial stages of the RCS process. The formability study was complemented with microstructural analysis (derivation of texture) and mechanical tests to obtain the strain-rate sensitivity. The texture analysis was done by employing X-ray diffraction, obtaining pole figures, and the orientation distribution function. It was noticed that the initial texture was conserved after successive RCS passes, but the intensity dropped. RCS process did not induce ß-fiber, contrary to common deformation process. The strain-rate sensitivity coefficient was measured through tensile tests at different temperatures and strain rates; the coefficient of the samples processed after one and two passes were still relatively high, indicating the capacity to delay necking, in agreement with the good formability observed in the initial passes of the RCS process.

4.
Materials (Basel) ; 13(1)2020 Jan 01.
Article En | MEDLINE | ID: mdl-31906322

In this study, the effect of a plasma ion carburizing process to duplex and superduplex stainless steels (DSS and SDSS), at 925 °C for a long time, as thermochemical process influencing the microstructural evolution is presented. The objective is to analyse the diffusion elements' influence on the precipitation of secondary phases after additional short thermal treatment. A comparison among the different treatments was performed after the resulting microstructures were analysed by Field Emission-Scanning Electron Microscope. Precipitation of secondary phases-sigma (σ), chi (χ), nitrides and carbides-seemed to occur during the treatments in a similar way for both steels (DSS and SDSS), although they showed a different morphology and precipitation mode. General corrosion behaviour of untreated and treated samples was investigated by potentiodynamic tests in order to prove their corrosion resistance. It was found that an improvement of the surface protection after the plasma carburizing process occurred.

5.
J Environ Manage ; 131: 298-306, 2013 Dec 15.
Article En | MEDLINE | ID: mdl-24189538

Modern life increasingly requires newer equipments and more technology. In addition, the fact that society is highly consumerist makes the amount of discarded equipment as well as the amount of waste from the manufacture of new products increase at an alarming rate. Printed circuit boards, which form the basis of the electronics industry, are technological waste of difficult disposal whose recycling is complex and expensive due to the diversity of materials and components and their difficult separation. Currently, printed circuit boards have a fixing problem, which is migrating from traditional Pb-Sn alloys to lead-free alloys without definite choice. This replacement is an attempt to minimize the problem of Pb toxicity, but it does not change the problem of separation of the components for later reuse and/or recycling and leads to other problems, such as temperature rise, delamination, flaws, risks of mechanical shocks and the formation of "whiskers". This article presents a literature review on printed circuit boards, showing their structure and materials, the environmental problem related to the board, some the different alternatives for recycling, and some solutions that are being studied to reduce and/or replace the solder, in order to minimize the impact of solder on the printed circuit boards.


Computers , Conservation of Natural Resources , Alloys/analysis , Electronic Waste/analysis , Lead/analysis , Tin/analysis
...