Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(8000): 765-771, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383627

RESUMEN

Photonic bound states in the continuum (BICs), embedded in the spectrum of free-space waves1,2 with diverging radiative quality factor, are topologically non-trivial dark modes in open-cavity resonators that have enabled important advances in photonics3,4. However, it is particularly challenging to achieve maximum near-field enhancement, as this requires matching radiative and non-radiative losses. Here we propose the concept of supercritical coupling, drawing inspiration from electromagnetically induced transparency in near-field coupled resonances close to the Friedrich-Wintgen condition2. Supercritical coupling occurs when the near-field coupling between dark and bright modes compensates for the negligible direct far-field coupling with the dark mode. This enables a quasi-BIC field to reach maximum enhancement imposed by non-radiative loss, even when the radiative quality factor is divergent. Our experimental design consists of a photonic-crystal nanoslab covered with upconversion nanoparticles. Near-field coupling is finely tuned at the nanostructure edge, in which a coherent upconversion luminescence enhanced by eight orders of magnitude is observed. The emission shows negligible divergence, narrow width at the microscale and controllable directivity through input focusing and polarization. This approach is relevant to various physical processes, with potential applications for light-source development, energy harvesting and photochemical catalysis.

2.
Opt Express ; 31(12): 20440-20448, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381438

RESUMEN

Scanning near-field optical microscopy (SNOM) is an important technique used to study the optical properties of material systems at the nanoscale. In previous work, we reported on the use of nanoimprinting to improve the reproducibility and throughput of near-field probes including complicated optical antenna structures such as the 'campanile' probe. However, precise control over the plasmonic gap size, which determines the near-field enhancement and spatial resolution, remains a challenge. Here, we present a novel approach to fabricating a sub-20 nm plasmonic gap in a near-field plasmonic probe through the controlled collapse of imprinted nanostructures using atomic layer deposition (ALD) coatings to define the gap width. The resulting ultranarrow gap at the apex of the probe provides a strong polarization-sensitive near-field optical response, which results in an enhancement of the optical transmission in a broad wavelength range from 620 to 820 nm, enabling tip-enhanced photoluminescence (TEPL) mapping of 2-dimensional (2D) materials. We demonstrate the potential of this near-field probe by mapping a 2D exciton coupled to a linearly polarized plasmonic resonance with below 30 nm spatial resolution. This work proposes a novel approach for integrating a plasmonic antenna at the apex of the near-field probe, paving the way for the fundamental study of light-matter interactions at the nanoscale.

3.
Nano Lett ; 23(11): 4901-4907, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37262350

RESUMEN

Tip-enhanced photoluminescence (TRPL) is a powerful technique for spatially and spectrally probing local optical properties of 2-dimensional (2D) materials that are modulated by the local heterogeneities, revealing inaccessible dark states due to bright state overlap in conventional far-field microscopy at room temperature. While scattering-type near-field probes have shown the potential to selectively enhance and reveal dark exciton emission, their technical complexity and sensitivity can pose challenges under certain experimental conditions. Here, we present a highly reproducible and easy-to-fabricate near-field probe based on nanoimprint lithography and fiber-optic excitation and collection. The novel near-field measurement configuration provides an ∼3 orders of magnitude out-of-plane Purcell enhancement, diffraction-limited excitation spot, and subdiffraction hyperspectral imaging resolution (below 50 nm) of dark exciton emission. The effectiveness of this high spatial XD mapping technique was then demonstrated through reproducible hyperspectral mapping of oxidized sites and bubble areas.

4.
Nanotechnology ; 34(34)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37167958

RESUMEN

We demonstrate fabrication of nano-patterned thin ALD (Atomic layer deposition) membrane (suspended/transferable) by using a bi-layer resist process where the bottom layer resist acts as a sacrificial layer. This method enables an all dry deterministic transfer of nano-patterned ALD membrane on desired substrate, allowing assembly of multitude of hetero-structures and functionalities that are not yet accessible. Unlike conventional ways of achieving patterned alumina membrane reported in literature our technique requires significantly less fabrication steps and paves the way for novel ALD membrane-based technology.

5.
Rev Sci Instrum ; 94(3): 033902, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37012819

RESUMEN

The ability to correlate optical hyperspectral mapping and high resolution topographic imaging is critically important to gain deep insight into the structure-function relationship of nanomaterial systems. Scanning near-field optical microscopy can achieve this goal, but at the cost of significant effort in probe fabrication and experimental expertise. To overcome these two limitations, we have developed a low-cost and high-throughput nanoimprinting technique to integrate a sharp pyramid structure on the end facet of a single-mode fiber that can be scanned with a simple tuning-fork technique. The nanoimprinted pyramid has two main features: (1) a large taper angle (∼70°), which determines the far-field confinement at the tip, resulting in a spatial resolution of 275 nm, an effective numerical aperture of 1.06, and (2) a sharp apex with a radius of curvature of ∼20 nm, which enables high resolution topographic imaging. Optical performance is demonstrated through evanescent field distribution mapping of a plasmonic nanogroove sample, followed by hyperspectral photoluminescence mapping of nanocrystals using a fiber-in-fiber-out light coupling mode. Through comparative photoluminescence mapping on 2D monolayers, we also show a threefold improvement in spatial resolution over chemically etched fibers. These results show that the bare nanoimprinted near-field probes provide simple access to spectromicroscopy correlated with high resolution topographic mapping and have the potential to advance reproducible fiber-tip-based scanning near-field microscopy.

6.
Microsyst Nanoeng ; 7: 40, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567754

RESUMEN

The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.

7.
Nat Commun ; 12(1): 2516, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947845

RESUMEN

The discovery of interaction-driven insulating and superconducting phases in moiré van der Waals heterostructures has sparked considerable interest in understanding the novel correlated physics of these systems. While a significant number of studies have focused on twisted bilayer graphene, correlated insulating states and a superconductivity-like transition up to 12 K have been reported in recent transport measurements of twisted double bilayer graphene. Here we present a scanning tunneling microscopy and spectroscopy study of gate-tunable twisted double bilayer graphene devices. We observe splitting of the van Hove singularity peak by ~20 meV at half-filling of the conduction flat band, with a corresponding reduction of the local density of states at the Fermi level. By mapping the tunneling differential conductance we show that this correlated system exhibits energetically split states that are spatially delocalized throughout the different regions in the moiré unit cell, inconsistent with order originating solely from onsite Coulomb repulsion within strongly-localized orbitals. We have performed self-consistent Hartree-Fock calculations that suggest exchange-driven spontaneous symmetry breaking in the degenerate conduction flat band is the origin of the observed correlated state. Our results provide new insight into the nature of electron-electron interactions in twisted double bilayer graphene and related moiré systems.

8.
Sci Adv ; 7(2)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523993

RESUMEN

The theory behind the electrical switching of antiferromagnets is premised on the existence of a well-defined broken symmetry state that can be rotated to encode information. A spin glass is, in many ways, the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. Here, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3 + δNbS2, rooted in the electrically stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. Manipulating antiferromagnetic spin textures using a spin glass' collective dynamics opens the field of antiferromagnetic spintronics to new material platforms with complex magnetic textures.

9.
Nanotechnology ; 32(2): 025305, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33089826

RESUMEN

Aluminum bowtie nanoantennas represent a possibility to confine and enhance electromagnetic (EM) field at optical frequencies in subwavelength regions by using an abundant and inexpensive metal. The native oxidation process of this metal is often viewed as a limitation for its application in plasmonics. Here, we show that in close gap configurations, the high refractive index of the native aluminum oxide helps in squeezing the plasmonic mode in extremely reduced size volumes, providing a higher EM near-field confinement and enhancement in the bowtie antenna gaps than achieved in the pure aluminum counterpart. Hence, the study provides new perspectives in the use of such a plasmonic antenna geometry within this aluminum system, which can be useful for improving plasmonics-enabled effects such as surface-enhanced Raman scattering- and light-matter interaction in strong coupling regime.

10.
Light Sci Appl ; 9(1): 194, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33298862

RESUMEN

Rainbow light trapping in plasmonic devices allows for field enhancement of multiple wavelengths within a single device. However, many of these devices lack precise control over spatial and spectral enhancement profiles and cannot provide extremely high localised field strengths. Here we present a versatile, analytical design paradigm for rainbow trapping in nanogroove arrays by utilising both the groove-width and groove-length as tuning parameters. We couple this design technique with fabrication through multilayer thin-film deposition and focused ion beam milling, which enables the realisation of unprecedented feature sizes down to 5 nm and corresponding extreme normalised local field enhancements up to 103. We demonstrate rainbow trapping within the devices through hyperspectral microscopy and show agreement between the experimental results and simulation. The combination of expeditious design and precise fabrication underpins the implementation of these nanogroove arrays for manifold applications in sensing and nanoscale optics.

11.
ACS Nano ; 14(11): 15417-15427, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33171041

RESUMEN

Herein, we demonstrate a cavity-enhanced hyperspectral refractometric imaging using an all-dielectric photonic crystal slab (PhCS). Our approach takes advantage of the synergy between two mechanisms, surface-enhanced fluorescence (SEF) and refractometric sensing, both based on high-Q resonances in proximity of bound states in the continuum (BICs). The enhanced local optical field of the first resonance amplifies of 2 orders of magnitude the SEF emission of a probe dye. Simultaneously, hyperspectral refractometric sensing, based on Fano interference between second mode and fluorescence emission, is used for mapping the spatially variant refractive index produced by the specimen on the PhCS. The spectral matching between first resonance and input laser is modulated by the specimen local refractive index, and thanks to the calibrated dependence with the spectral shift of the Fano resonance, the cavity tuning is used to achieve an enhanced correlative refractometric map with a resolution of 10-5 RIU within femtoliter-scale sampling volumes. This is experimentally applied also on live prostate cancer cells grown on the PhCS, reconstructing enhanced surface refractive index images at the single-cell level. This dual mechanism of quasi-BIC spatially variant gain tracked by quasi-BIC refractometric sensing provides a correlative imaging platform that can find application in many fields for monitoring physical and biochemical processes, such as molecular interactions, chemical reactions, or surface cell analysis.


Asunto(s)
Óptica y Fotónica , Refractometría , Rayos Láser , Luz
12.
Sci Rep ; 10(1): 20694, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244040

RESUMEN

There are few materials that are broadly used for fabricating optical metasurfaces for visible light applications. Gallium phosphide (GaP) is a material that, due to its optical properties, has the potential to become a primary choice but due to the difficulties in fabrication, GaP thin films deposited on transparent substrates have never been exploited. In this article we report the design, fabrication, and characterization of three different amorphous GaP metasurfaces obtained through sputtering. Although the material properties can be further optimized, our results show the potential of this material for visible applications making it a viable alternative in the material selection for optical metasurfaces.

13.
ACS Nano ; 14(11): 14769-14778, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33095557

RESUMEN

Plasmon-enhanced fluorescence is demonstrated in the vicinity of metal surfaces due to strong local field enhancement. Meanwhile, fluorescence quenching is observed as the spacing between fluorophore molecules and the adjacent metal is reduced below a threshold of a few nanometers. Here, we introduce a technology, placing the fluorophore molecules in plasmonic hotspots between pairs of collapsible nanofingers with tunable gap sizes at sub-nanometer precision. Optimal gap sizes with maximum plasmon enhanced fluorescence are experimentally identified for different dielectric spacer materials. The ultrastrong local field enhancement enables simultaneous detection and characterization of sharp Raman fingerprints in the fluorescence spectra. This platform thus enables in situ monitoring of competing excitation enhancement and emission quenching processes. We systematically investigate the mechanisms behind fluorescence quenching. A quantum mechanical model is developed which explains the experimental data and will guide the future design of plasmon enhanced spectroscopy applications.

14.
Nanoscale ; 12(37): 19170-19177, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32926034

RESUMEN

Plasmonic nanostructures serve as optical antennas for concentrating the energy of incoming light in localized hotspots close to their surface. By positioning nanoemitters in the antenna hotspots, energy transfer is enabled, leading to novel hybrid antenna-emitter-systems, where the antenna can be used to manipulate the optical properties of the nano-objects. The challenge remains how to precisely position emitters within the hotspots. We report a self-aligned process based on dry laser ablation of a calixarene that enables the attachment of molecules within the electromagnetic hotspots at the tips of gold nanocones. Within the laser focus, the ablation threshold is exceeded in nanoscale volumes, leading to selective access of the hotspot areas. A first indication of the site-selective functionalization process is given by attaching fluorescently labelled proteins to the nanocones. In a second example, Raman-active molecules are selectively attached only to nanocones that were previously exposed in the laser focus, which is verified by surface enhanced Raman spectroscopy. Enabling selective functionalization is an important prerequisite e.g. for preparing single photon sources for quantum optical technologies, or multiplexed Raman sensing platforms.

15.
ACS Nano ; 14(6): 6999-7007, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32459460

RESUMEN

Förster resonant energy transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as an optoelectronic design element to transport energy. However, so far, nanocrystal (NC) systems supported only diffusion lengths of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (CsPbBr3 PNCs). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs' high PL quantum yield, large absorption cross section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites' optical absorption depth, thus enabling the design of device architectures with improved performances and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices.

16.
Opt Express ; 27(13): 18776-18786, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31252814

RESUMEN

In this work, we investigate the evanescent field sensing mechanism provided by an all-dielectric metasurface supporting bound states in the continuum (BICs). The metasurface is based on a transparent photonic crystal with subwavelength thickness. The BIC electromagnetic field is localized along the direction normal to the photonic crystal nanoscale-thin slab (PhCS) because of a topology-induced confinement, exponentially decaying in the material to detect. On the other hand, it is totally delocalized in the PhCS plane, which favors versatile and multiplexing sensing schemes. Liquids with different refractive indices, ranging from 1.33 to 1.45, are infiltrated in a microfluidic chamber bonded to the sensing dielectric metasurface. We observe an experimental exponential sensitivity leading to differential values as large as 226 nm/RIU with excellent FOM. This behavior is explained in terms of the physical superposition of the field with the material under investigation and supported by a thorough numerical analysis. The mechanism is then translated to the case of molecular adsorption where a suitable theoretical engineering of the optical structure points out potential sensitivities as large as 4000 nm/RIU.

17.
Nat Commun ; 10(1): 2652, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201310

RESUMEN

Polaritons are widely investigated quasiparticles with fundamental and technological significance due to their unique properties. They have been studied most extensively in semiconductors when photons interact with various elementary excitations. However, other strongly coupled excitations demonstrate similar dynamics. Specifically, when magnon and phonon modes are coupled, a hybridized magnon-phonon quasiparticle can form. Here, we report on the direct observation of coupled magnon-phonon dynamics within a single thin nickel nanomagnet. We develop an analytic description to model the dynamics in two dimensions, enabling us to isolate the parameters influencing the frequency splitting. Furthermore, we demonstrate tuning of the magnon-phonon interaction into the strong coupling regime via the orientation of the applied magnetic field.

18.
Lab Chip ; 19(14): 2394-2403, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31204419

RESUMEN

Plasmonic nanoantennas are ideal for single molecule detection since they nano-focus the light beyond diffraction and enhance the optical fields by several orders of magnitude. But delivering the molecules into these nanometric hot-spots is a real challenge. Here, we present a dynamic sensor, with label-free real-time detection capabilities, which can detect and count molecules and particles one by one in their native environment independently of their concentration. To this end, we have integrated a 35 nm gap plasmonic bowtie antenna with a 30 nm × 30 nm nanochannel. The channel runs through the antenna gap, and delivers the analyte directly into the hot spot. We show how the antenna probes into zeptoliter volumes inside the nanochannel by observing the dark field resonance shift during the filling process of a non-fluorescent liquid. Moreover, we detect and count single quantum dots, one by one, at ultra-high concentrations of up to 25 mg mL-1. The nano-focusing of light, reduces the observation volume in five orders of magnitude compared to the diffraction limited spot, beating the diffraction limit. These results prove the unique sensitivity of the device and in the future can be extended to detection of a variety of molecules for biomedical applications.

19.
Sci Rep ; 9(1): 2768, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808883

RESUMEN

Materials for nanophotonic devices ideally combine ease of deposition, very high refractive index, and facile pattern formation through lithographic templating and/or etching. In this work, we present a scalable method for producing high refractive index WS2 layers by chemical conversion of WO3 synthesized via atomic layer deposition (ALD). These conformal nanocrystalline thin films demonstrate a surprisingly high index of refraction (n > 3.9), and structural fidelity compatible with lithographically defined features down to ~10 nm. Although this process yields highly polycrystalline films, the optical constants are in agreement with those reported for single crystal bulk WS2. Subsequently, we demonstrate three photonic structures - first, a two-dimensional hole array made possible by patterning and etching an ALD WO3 thin film before conversion, second, an analogue of the 2D hole array first patterned into fused silica before conformal coating and conversion, and third, a three-dimensional inverse opal photonic crystal made by conformal coating of a self-assembled polystyrene bead template. These results can be trivially extended to other transition metal dichalcogenides, thus opening new opportunities for photonic devices based on high refractive index materials.

20.
Nanotechnology ; 29(40): 405302, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30010091

RESUMEN

The next generation of hard disk drive technology for data storage densities beyond 5 Tb/in2 will require single-bit patterning of features with sub-10 nm dimensions by nanoimprint lithography. To address this challenge master templates are fabricated using pattern multiplication with atomic layer deposition (ALD). Sub-10 nm lithography requires a solid understanding of materials and their interactions. In this work we study two important oxide materials, silicon dioxide and titanium dioxide, as the pattern spacer and look at their interactions with carbon, chromium and silicon dioxide. We found that thermal titanium dioxide ALD allows for the conformal deposition of a spacer layer without damaging the carbon mandrel and eliminates the surface modification due to the reactivity of the metal-organic precursor. Finally, using self-assembled block copolymer lithography and thermal titanium dioxide spacer fabrication, we demonstrate pattern doubling with 7.5 nm half-pitch spacer features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA