Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Immunol ; : e2350685, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890809

RESUMEN

Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.

2.
Cell Rep ; 42(12): 113516, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048225

RESUMEN

The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Ratones , Animales , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Células Asesinas Naturales , Ligandos , Péptidos/metabolismo , Neoplasias/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
4.
EMBO J ; 42(2): e110553, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36504224

RESUMEN

Epithelial-mesenchymal transition (EMT) is pivotal in the initiation and development of cancer cell metastasis. We observed that the abundance of glycosphingolipids (GSLs), especially ganglioside subtypes, decreased significantly during TGF-ß-induced EMT in NMuMG mouse mammary epithelial cells and A549 human lung adenocarcinoma cells. Transcriptional profiling showed that TGF-ß/SMAD response genes and EMT signatures were strongly enriched in NMuMG cells, along with depletion of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme that catalyzes the initial step in GSL biosynthesis. Consistent with this finding, genetic or pharmacological inhibition of UGCG promoted TGF-ß signaling and TGF-ß-induced EMT. UGCG inhibition promoted A549 cell migration, extravasation in the zebrafish xenograft model, and metastasis in mice. Mechanistically, GSLs inhibited TGF-ß signaling by promoting lipid raft localization of the TGF-ß type I receptor (TßRI) and by increasing TßRI ubiquitination and degradation. Importantly, we identified ST3GAL5-synthesized a-series gangliosides as the main GSL subtype involved in inhibition of TGF-ß signaling and TGF-ß-induced EMT in A549 cells. Notably, ST3GAL5 is weakly expressed in lung cancer tissues compared to adjacent nonmalignant tissues, and its expression correlates with good prognosis.


Asunto(s)
Neoplasias Pulmonares , Factor de Crecimiento Transformador beta , Humanos , Animales , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Gangliósidos , Transición Epitelial-Mesenquimal/genética , Pez Cebra/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoesfingolípidos , Catálisis , Movimiento Celular , Línea Celular Tumoral
5.
J Immunol ; 209(5): 907-915, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35922063

RESUMEN

The PD-L1/2-PD-1 immune checkpoint is essential for the proper induction of peripheral tolerance and limits autoimmunity, whereas tumor cells exploit their expression to promote immune evasion. Many different cell types express PD-L1/2, either constitutively or upon stimulation, but the factors driving this expression are often poorly defined. In this study, using genome-wide CRISPR activation screening, we identified three factors that upregulate PD-L1 expression: GATA2, MBD6, and transcription cofactor vestigial-like protein 3 (VGLL3). VGLL3 acts as a transcriptional regulator, and its expression induced PD-L1 in many different cell types. Conversely, loss of VGLL3 impaired IFN-γ-induced PD-L1/2 expression in human keratinocytes. Mechanistically, by performing a second screen to identify proteins acting in concert with VGLL3, we found that VGLL3 forms a complex with TEAD1 and RUNX1/3 to drive expression of PD-L1/2. Collectively, our work identified a new transcriptional complex controlling PD-L1/2 expression and suggests that VGLL3, in addition to its known role in the expression of proinflammatory genes, can balance inflammation by upregulating the anti-inflammatory factors PD-L1 and PD-L2.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Evasión Inmune , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Muerte Celular Programada 1/genética , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
6.
Contact (Thousand Oaks) ; 4: 25152564211012246, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34036242

RESUMEN

Membrane contact sites are formed by tether proteins that have the ability to bring two organellar membranes together. VAP proteins are a family of endoplasmic reticulum (ER)-resident tether proteins specialized in interacting with FFAT (two phenylalanines in an acidic tract) peptide motifs in other proteins. If the FFAT-motif-containing proteins reside on other organelles, VAP proteins form contact sites between these organelles and the ER. The role of VAPA and VAPB, the two founding members of the VAP family in recruiting proteins to the ER and forming membrane contact sites is well appreciated as numerous interaction partners of VAPA and VAPB at different intracellular contact sites have been characterized. Recently, three new proteins -MOSPD1, MOSPD2 and MOSPD3-have been added to the VAP family. While MOSPD2 has a motif preference similar to VAPA and VAPB, MOSPD1 and MOSPD3 prefer to interact with proteins containing FFNT (two phenylalanines in a neutral tract) motifs. In this review, we discuss the recent advances in motif binding by VAP proteins along with the other biological processes VAP proteins are involved in.

7.
EMBO Rep ; 22(3): e50815, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33554435

RESUMEN

The endoplasmic reticulum (ER) is the largest organelle contacting virtually every other organelle for information exchange and control of processes such as transport, fusion, and fission. Here, we studied the role of the other organelles on ER network architecture in the cell periphery. We show that the co-migration of the ER with other organelles, called ER hitchhiking facilitated by late endosomes and lysosomes is a major mechanism controlling ER network architecture. When hitchhiking occurs, emerging ER structures may fuse with the existing ER tubules to alter the local ER architecture. This couples late endosomal/lysosomal positioning and mobility to ER network architecture. Conditions restricting late endosomal movement-including cell starvation-or the depletion of tether proteins that link the ER to late endosomes reduce ER dynamics and limit the complexity of the peripheral ER network architecture. This indicates that among many factors, the ER is controlled by late endosomal movement resulting in an alteration of the ER network architecture.


Asunto(s)
Retículo Endoplásmico , Endosomas , Transporte Biológico , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo
9.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33271119

RESUMEN

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Linfocitos T CD8-positivos/inmunología , Glioma/inmunología , Glicoesfingolípidos/metabolismo , Glicosiltransferasas/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoterapia/métodos , Presentación de Antígeno , Ácido Aspártico Endopeptidasas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/mortalidad , Glicoesfingolípidos/inmunología , Antígenos HLA/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Activación de Linfocitos , Transducción de Señal , Análisis de Supervivencia , Escape del Tumor
10.
Cell Rep ; 33(10): 108475, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296653

RESUMEN

Membrane contact sites (MCS) are intracellular regions where two organelles come closer to exchange information and material. The majority of the endoplasmic reticulum (ER) MCS are attributed to the ER-localized tether proteins VAPA, VAPB, and MOSPD2. These recruit other proteins to the ER by interacting with their FFAT motifs. Here, we describe MOSPD1 and MOSPD3 as ER-localized tethers interacting with FFAT motif-containing proteins. Using BioID, we identify proteins interacting with VAP and MOSPD proteins and find that MOSPD1 and MOSPD3 prefer unconventional FFAT-related FFNT (two phenylalanines [FF] in a neutral tract) motifs. Moreover, VAPA/VAPB/MOSPD2 and MOSPD1/MOSPD3 assemble into two separate ER-resident complexes to interact with FFAT and FFNT motifs, respectively. Because of their ability to interact with FFNT motifs, MOSPD1 and MOSPD3 could form MCS between the ER and other organelles. Collectively, these findings expand the VAP family of proteins and highlight two separate complexes in control of interactions between intracellular compartments.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos/genética , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Membranas Mitocondriales/metabolismo , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Mapeo de Interacción de Proteínas/métodos , Proteínas de Transporte Vesicular/fisiología
11.
EMBO J ; 39(6): e102301, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32080880

RESUMEN

The endolysosomal system fulfils a myriad of cellular functions predicated on regulated membrane identity progressions, collectively termed maturation. Mature or "late" endosomes are designated by small membrane-bound GTPases Rab7 and Arl8b, which can either operate independently or collaborate to form a joint compartment. Whether, and how, Rab7 and Arl8b resolve this hybrid identity compartment to regain functional autonomy is unknown. Here, we report that Arl8b employs its effector SKIP to instigate inactivation and removal of Rab7 from select membranes. We find that SKIP interacts with Rab7 and functions as its negative effector, delivering the cognate GAP, TBC1D15. Recruitment of TBC1D15 to SKIP occurs via the HOPS complex, whose assembly is facilitated by contacts between Rab7 and the KMI motif of SKIP. Consequently, SKIP mediates reinstatement of single identity Arl8b sub-compartment through an ordered Rab7-to-Arl8b handover, and, together with Rab7's positive effector RILP, enforces spatial, temporal and morphological compartmentalization of endolysosomal organelles.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Factores de Ribosilacion-ADP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Compartimento Celular , Endosomas/metabolismo , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Lisosomas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
12.
Traffic ; 19(10): 761-769, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29900632

RESUMEN

Lysosomes are highly dynamic organelles that can move rapidly throughout the cell. They distribute in a rather immobile pool located around the microtubule-organizing center in a "cloud," and a highly dynamic pool in the cell periphery. Their spatiotemporal characteristics allow them to carry out multiple biological functions, such as cargo degradation, antigen presentation and plasma membrane repair. Therefore, it is not surprising that lysosomal dysfunction underlies various diseases, including cancer, neurodegenerative and autoimmune diseases. In most of these biological events, the involvement of lysosomes is dependent on their ability to move throughout the cytoplasm, to find and fuse to the correct compartments to receive and deliver substrates for further handling. These dynamics are orchestrated by motor proteins moving along cytoskeletal components. The complexity of the mechanisms responsible for controlling lysosomal transport has recently been appreciated and has yielded novel insights into interorganellar communication, as well as lipid-protein interplay. In this review, we discuss the current understanding of the mechanisms of lysosomal transport and the molecular machineries that control this mobility.


Asunto(s)
Movimiento Celular/fisiología , Endocitosis/fisiología , Lisosomas/fisiología , Transporte Biológico , Dineínas/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiología , Cinesinas/metabolismo , Lisosomas/metabolismo , Modelos Biológicos , Miosinas/metabolismo , Fosfatidilinositoles/metabolismo , Análisis Espacio-Temporal
13.
Biosci Rep ; 37(4)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28659495

RESUMEN

Ceramides are essential precursors of sphingolipids with a dual role as mediators of apoptotic cell death. Previous work revealed that the ER-resident ceramide phosphoethanolamine (CPE) synthase SMSr/SAMD8 is a suppressor of ceramide-mediated apoptosis in cultured cells. Anti-apoptotic activity of SMSr requires a catalytically active enzyme but also relies on the enzyme's N-terminal sterile α-motif or SAM domain. Here, we demonstrate that SMSr itself is a target of the apoptotic machinery. Treatment of cells with staurosporine or the death receptor ligand FasL triggers caspase-mediated cleavage of SMSr at a conserved aspartate located downstream of the enzyme's SAM domain and upstream of its first membrane span. Taking advantage of reconstitution experiments with SMSr produced in a cell-free expression system, specific caspase-inhibitors and gene silencing approaches, we show that SMSr is a novel and specific substrate of caspase-6, a non-conventional effector caspase implicated in Huntington's and Alzheimer's diseases. Our findings underscore a role of SMSr as negative regulator of ceramide-induced cell death and, in view of a prominent expression of the enzyme in brain, raise questions regarding its potential involvement in neurodegenerative disorders.


Asunto(s)
Apoptosis , Caspasa 6/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Caspasa 6/genética , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Células HeLa , Humanos , Dominios Proteicos , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
14.
J Lipid Res ; 58(5): 962-973, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28336574

RESUMEN

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Asunto(s)
Dominio Catalítico , Mutagénesis Sitio-Dirigida , Esfingolípidos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Dominios Proteicos , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
15.
Sci Rep ; 7: 41290, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120887

RESUMEN

SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER.

16.
J Biol Chem ; 291(47): 24735-24746, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27729449

RESUMEN

Single-molecule photobleaching has emerged as a powerful non-invasive approach to extract the stoichiometry of multimeric membrane proteins in their native cellular environment. However, this method has mainly been used to determine the subunit composition of ion channels and receptors at the plasma membrane. Here, we applied single-molecule photobleaching to analyze the oligomeric state of an endoplasmic reticulum (ER) resident candidate ceramide sensor protein, SMSr/SAMD8. Co-immunoprecipitation and chemical cross-linking studies previously revealed that the N-terminal sterile alpha motif (or SAM) domain of SMSr drives self-assembly of the protein into oligomers and that SMSr oligomerization is promoted by curcumin, a drug known to perturb ER ceramide and calcium homeostasis. Application of cell spreading surface-active coating materials in combination with total internal reflection fluorescence (TIRF) microscopy allowed us to image GFP-tagged SMSr proteins as single fluorescent spots in the ER of HeLa cells in which expression of endogenous SMSr was abolished. In line with our biochemical analysis, we find that the number of bleaching steps in SMSr-GFP-positive spots displays a substantial drop after removal of the SAM domain. In contrast, treatment of cells with curcumin increased the number of bleaching steps. Our results document the first successful application of single-molecule photobleaching to resolve drug-induced and domain-dependent changes in the oligomeric state of an ER-resident membrane protein, hence establishing a complementary method to unravel the mechanism by which SMSr controls ceramide levels in the ER.


Asunto(s)
Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Fotoblanqueo , Ceramidas/química , Retículo Endoplásmico/química , Células HeLa , Humanos , Proteínas de la Membrana/química , Microscopía Fluorescente
17.
J Lipid Res ; 57(7): 1273-85, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27165857

RESUMEN

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Ingeniería de Proteínas , Esfingomielinas/biosíntesis , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Membrana Celular/enzimología , Membrana Celular/metabolismo , Sistema Libre de Células , Química Clic , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Células HeLa , Humanos , Proteínas de la Membrana/química , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Esfingomielinas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...