Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107407, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796065

RESUMEN

Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/ß-catenin pathway, which promotes the degradation of ß-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/ß-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of ß-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/ß-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate ß-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/ß KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-ß-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/ß-catenin pathway at the level of ß-catenin and Axin.


Asunto(s)
Caseína Quinasa Ialfa , Vía de Señalización Wnt , beta Catenina , Humanos , Empalme Alternativo , beta Catenina/metabolismo , beta Catenina/genética , Caseína Quinasa Ialfa/metabolismo , Caseína Quinasa Ialfa/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Fosforilación , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genética
2.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511331

RESUMEN

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Animales , Neurogénesis/genética , Desarrollo Embrionario/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Cráneo/embriología , Cráneo/patología , Ratones , Fisura del Paladar/genética , Fisura del Paladar/patología , Fisura del Paladar/embriología , Labio Leporino/genética , Labio Leporino/patología , Labio Leporino/embriología , Nervio Trigémino/embriología , Embrión de Mamíferos/metabolismo , Cara/embriología , Cara/anomalías , Fenotipo , Discapacidad Intelectual/genética , Mutación/genética , Proteína Doblecortina
3.
Front Cell Dev Biol ; 10: 911966, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561363

RESUMEN

The migratory properties of leukemic cells are commonly associated with their pathological potential and can significantly affect the disease progression. While the research in immunopathology mostly employed powerful indirect methods such as flow cytometry, these cells were rarely observed directly using live imaging microscopy. This is especially true for the malignant cells of the B-cell lineage, such as those originating from chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). In this study, we employed open-source image analysis tools to automatically and quantitatively describe the amoeboid migration of four B-cell leukemic and lymphoma cell lines and primary CLL cells. To avoid the effect of the shear stress of the medium on these usually non-adherent cells, we have confined the cells using a modified under-agarose assay. Surprisingly, the behavior of tested cell lines differed substantially in terms of basal motility or response to chemokines and VCAM1 stimulation. Since casein kinase 1 (CK1) was reported as a regulator of B-cell migration and a promoter of CLL, we looked at the effects of CK1 inhibition in more detail. Migration analysis revealed that CK1 inhibition induced rapid negative effects on the migratory polarity of these cells, which was quantitatively and morphologically distinct from the effect of ROCK inhibition. We have set up an assay that visualizes endocytic vesicles in the uropod and facilitates morphological analysis. This assay hints that the effect of CK1 inhibition might be connected to defects in polarized intracellular transport. In summary, 1) we introduce and validate a pipeline for the imaging and quantitative assessment of the amoeboid migration of CLL/MCL cells, 2) we provide evidence that the assay is sensitive enough to mechanistically study migration defects identified by the transwell assay, and 3) we describe the polarity defects induced by inhibition or deletion of CK1ε.

4.
Front Cell Dev Biol ; 10: 838871, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295854

RESUMEN

Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.

5.
Semin Cell Dev Biol ; 125: 26-36, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34896020

RESUMEN

Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.


Asunto(s)
Polaridad Celular , Vía de Señalización Wnt , Animales , Polaridad Celular/fisiología , Células Epiteliales , Cresta Neural , Vertebrados , Vía de Señalización Wnt/fisiología
6.
J Biol Rhythms ; 31(6): 568-576, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27708112

RESUMEN

Circadian clocks keep organisms in synchrony with external day-night cycles. The free running period (FRP) of the clock, however, is usually only close to-not exactly-24 h. Here, we explored the geographical variation in the FRP of the linden bug, Pyrrhocoris apterus, in 59 field-lines originating from a wide variety of localities representing geographically different environments. We have identified a remarkable range in the FRPs between field-lines, with the fastest clock at ~21 h and the slowest close to 28 h, a range comparable to the collections of clock mutants in model organisms. Similarly, field-lines differed in the percentage of rhythmic individuals, with a minimum of 13.8% and a maximum of 86.8%. Although the FRP correlates with the latitude and perhaps with the altitude of the locality, the actual function of this FRP diversity is currently unclear. With the recent technological progress of massive parallel sequencing and genome editing, we can expect remarkable progress in elucidating the genetic basis of similar geographic variants in P. apterus or in similar emerging model species of chronobiology.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Heterópteros/fisiología , Actividad Motora/fisiología , Tilia/parasitología , Animales , Europa (Continente) , Europa Oriental , Femenino , Geografía , Heterópteros/clasificación , Heterópteros/genética , Israel , Masculino , Filogenia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA