Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 381, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013389

RESUMEN

GPR120 (encoded by FFAR4 gene) is a receptor for long chain fatty acids, activated by ω-3 Polyunsaturated Fatty Acids (PUFAs), and expressed in many cell types. Its role in the context of colorectal cancer (CRC) is still puzzling with many controversial evidences. Here, we explored the involvement of epithelial GPR120 in the CRC development. Both in vitro and in vivo experiments were conducted to mimic the conditional deletion of the receptor from gut epithelium. Intestinal permeability and integrity of mucus layer were assessed by using Evans blue dye and immunofluorescence for MUC-2 protein, respectively. Microbiota composition, presence of lipid mediators and short chain fatty acids were analyzed in the stools of conditional GPR120 and wild type (WT) mice. Incidence and grade of tumors were evaluated in all groups of mice before and after colitis-associated cancer. Finally, GPR120 expression was analyzed in 9 human normal tissues, 9 adenomas, and 17 primary adenocarcinomas. Our work for the first time highlights the role of the receptor in the progression of colorectal cancer. We observed that the loss of epithelial GPR120 in the gut results into increased intestinal permeability, microbiota translocation and dysbiosis, which turns into hyperproliferation of epithelial cells, likely through the activation of ß -catenin signaling. Therefore, the loss of GPR120 represents an early event of CRC, but avoid its progression as invasive cancer. these results demonstrate that the epithelial GPR120 receptor is essential to maintain the mucosal barrier integrity and to prevent CRC developing. Therefore, our data pave the way to GPR120 as an useful marker for the phenotypic characterization of CRC lesions and as new potential target for CRC prevention.


Asunto(s)
Adenocarcinoma/metabolismo , Neoplasias Asociadas a Colitis/metabolismo , Colon/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/microbiología , Adenocarcinoma/patología , Animales , Traslocación Bacteriana , Proliferación Celular , Neoplasias Asociadas a Colitis/genética , Neoplasias Asociadas a Colitis/microbiología , Neoplasias Asociadas a Colitis/patología , Colon/microbiología , Colon/patología , Progresión de la Enfermedad , Disbiosis , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones Noqueados , Permeabilidad , Receptores Acoplados a Proteínas G/genética , Carga Tumoral
2.
J Control Release ; 310: 198-208, 2019 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-31430501

RESUMEN

Interstitial lung involvement in Systemic Sclerosis (SSc-ILD) is a complication with high morbidity and mortality. Specifically, engineered gold nanoparticles (GNPs) are proposed as targeted delivery system increasing efficacy of drugs with antifibrotic effect, such as tyrosine kinases. We aimed to test in vitro and in vivo the activity of targeted Imatinib (Im)-loaded GNP on SSc-ILD patients derived cells and in experimental model of lung fibrosis. GNPs functionalized with anti-CD44 and loaded with Im (GNP-HCIm) were synthesized. Lung fibroblasts (LFs) and alveolar macrophages from bronchoalveolar lavage fluids of SSc-ILD patients were cultured in presence of nanoparticles. GNP-HCIm significantly inhibited proliferation and viability inducing apoptosis of LFs and effectively reduced IL-8 release, viability and M2 polarization in alveolar macrophages. Anti-fibrotic effect of tracheal instilled GNP-HCIm was evaluated on bleomycin lung fibrosis mouse model comparing effect with common route of Im administration. GNP-HCIm were able to reduce significantly lung fibrotic changes and collagen deposition. Finally, electron microscopy revealed the presence of GNPs inside alveolar macrophages. These data support the use of GNPs locally administered in the development of new therapeutic approaches to SSc-ILD.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Oro/química , Mesilato de Imatinib/uso terapéutico , Pulmón/efectos de los fármacos , Nanopartículas del Metal/química , Fibrosis Pulmonar/tratamiento farmacológico , Esclerodermia Sistémica/tratamiento farmacológico , Animales , Bleomicina/farmacología , Líquido del Lavado Bronquioalveolar/citología , Modelos Animales de Enfermedad , Liberación de Fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Mesilato de Imatinib/administración & dosificación , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , Esclerodermia Sistémica/patología
3.
Sci Rep ; 9(1): 8412, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182789

RESUMEN

Colour polymorphism occurs when two or more genetically-based colour morphs permanently coexist within an interbreeding population. Colouration is usually associated to other life-history traits (ecological, physiological, behavioural, reproductive …) of the bearer, thus being the phenotypic marker of such set of genetic features. This visual badge may be used to inform conspecifics and to drive those decision making processes which may contribute maintaining colour polymorphism under sexual selection context. The importance of such information suggests that other communication modalities should be recruited to ensure its transfer in case visual cues were insufficient. Here, for the first time, we investigated the potential role of proteins from femoral gland secretions in signalling colour morph in a polymorphic lizard. As proteins are thought to convey identity-related information, they represent the ideal cues to build up the chemical modality used to badge colour morphs. We found strong evidence for the occurrence of morph-specific protein profiles in the three main colour-morphs of the common wall lizard, which showed both qualitative and quantitative differences in protein expression. As lizards are able to detect proteins by tongue-flicking and vomeronasal organ, this result support the hypothesis that colour polymorphic lizards may use a multimodal signal to inform about colour-morph.


Asunto(s)
Estructuras Animales/metabolismo , Lagartos/anatomía & histología , Lagartos/metabolismo , Pigmentación , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Electroforesis en Gel Bidimensional , Masculino , Espectrometría de Masas , Péptidos/química , Péptidos/metabolismo
4.
High Throughput ; 8(1)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781848

RESUMEN

: The neutrophilic component in bronchiolitis obliterans syndrome (BOS, the main form of chronic lung rejection), plays a crucial role in the pathogenesis and maintenance of the disorder. Human Neutrophil Elastase (HNE), a serine protease responsible of elastin degradation whose action is counteracted by α1-antitrypsin (AAT), a serum inhibitor specific for this protease. This work aimed to investigate the relationship between HNE and AAT in bronchoalveolar lavage fluid (BALf) from stable lung transplant recipients and BOS patients to understand whether the imbalance between proteases and inhibitors is relevant to the development of BOS. To reach this goal a multidisciplinary procedure was applied which included: (i) the use of electrophoresis/western blotting coupled with liquid chromatography-mass spectrometric analysis; (ii) the functional evaluation of the residual antiprotease activity, and (iii) a neutrophil count.

5.
Electrophoresis ; 40(1): 151-164, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30216498

RESUMEN

Detection of proteins which may be potential biomarkers of disorders represents a big step forward in understanding the molecular mechanisms that underlie pathological processes. In this context proteomics plays the important role of opening a path for the identification of molecular signatures that can potentially assist in early diagnosis of several clinical disturbances. Aim of this report is to provide an overview of the wide variety of proteomic strategies that have been applied to the investigation of chronic obstructive pulmonary disease (COPD), a severe disorder that causes an irreversible damage to the lungs and for which there is no cure yet. The results in this area published over the past decade show that proteomics indeed has the ability of monitoring alterations in expression profiles of proteins from fluids/tissues of patients affected by COPD and healthy controls. However, these data also suggest that proteomics, while being an attractive tool for the identification of novel pathological mediators of COPD, remains a technique mainly generated and developed in research laboratories. Great efforts dedicated to the validation of these biological signatures will result in the proof of their clinical utility.


Asunto(s)
Biomarcadores , Proteómica/métodos , Enfermedad Pulmonar Obstructiva Crónica , Biomarcadores/análisis , Biomarcadores/metabolismo , Líquido del Lavado Bronquioalveolar/química , Cromatografía Liquida , Electroforesis Capilar , Femenino , Humanos , Masculino , Espectrometría de Masas , Proteoma/análisis , Proteoma/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
6.
Front Pharmacol ; 9: 836, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108505

RESUMEN

Quorum sensing (QS) is a bacterial intercellular communication process which controls the production of major virulence factors, such as proteases, siderophores, and toxins, as well as biofilm formation. Since the inhibition of this pathway reduces bacterial virulence, QS is considered a valuable candidate drug target, particularly for the treatment of opportunistic infections, such as those caused by Burkholderia cenocepacia in cystic fibrosis patients. Diketopiperazine inhibitors of the acyl homoserine lactone synthase CepI have been recently described. These compounds are able to impair the ability of B. cenocepacia to produce proteases, siderophores, and to form biofilm, being also active in a Caenorhabditis elegans infection model. However, the precise mechanism of action of the compounds, as well as their effect on the cell metabolism, fundamental for candidate drug optimization, are still not completely defined. Here, we performed a proteomic analysis of B. cenocepacia cells treated with one of these inhibitors, and compared it with a cepI deleted strain. Our results demonstrate that the effects of the compound are similar to the deletion of cepI, clearly confirming that these molecules function as inhibitors of the acyl homoserine lactone synthase. Moreover, to deepen our knowledge about the binding mechanisms of the compound to CepI, we exploited previously published in silico structural insights about this enzyme structure and validated different candidate binding pockets on the enzyme surface using site-directed mutagenesis and biochemical analyses. Our experiments identified a region near the predicted S-adenosylmethionine binding site critically involved in interactions with the inhibitor. These results could be useful for future structure-based optimization of these CepI inhibitors.

7.
High Throughput ; 7(1)2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29485613

RESUMEN

Very often the clinical features of rare neurodegenerative disorders overlap with those of other, more common clinical disturbances. As a consequence, not only the true incidence of these disorders is underestimated, but many patients also experience a significant delay before a definitive diagnosis. Under this scenario, it appears clear that any accurate tool producing information about the pathological mechanisms of these disorders would offer a novel context for their precise identification by strongly enhancing the interpretation of symptoms. With the advent of proteomics, detection and identification of proteins in different organs/tissues, aimed at understanding whether they represent an attractive tool for monitoring alterations in these districts, has become an area of increasing interest. The aim of this report is to provide an overview of the most recent applications of proteomics as a new strategy for identifying biomarkers with a clinical utility for the investigation of rare neurodegenerative disorders.

8.
Electrophoresis ; 39(1): 160-178, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28792066

RESUMEN

Aim of this article is to focus the attention of the reader on the application of CE/MS and LC/MS to the analysis of human body fluids not currently used for the diagnosis of disorders and, for this reason, catalogued as "less/nonconventional" fluids, that is, tears, nasal secretions, cerumen, bronchoalveolar lavage fluid, sputum, exhaled breath condensate, nipple aspirate, breast milk, amniotic fluid, bile, seminal plasma, liposuction aspirate fluid, and synovial fluid. The pool of articles presented in this report demonstrates that, rather than being neglected, these fluids are an important resource for the evaluation of possible pathologic conditions. Thus, being a sort of mirror that reflects the normal internal characteristics and disease state of an individual, they benefit of an increasing appreciation. This review follows a previous report of this series and covers the latest developments in this field that have been published in specialist journals in the years 2015-2017.


Asunto(s)
Líquidos Corporales/química , Animales , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Pruebas de Química Clínica/métodos , Electroforesis Capilar/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Cuerpo Humano , Humanos , Espectrometría de Masas/métodos , Proteómica , Sensibilidad y Especificidad
9.
Electrophoresis ; 38(12): 1538-1550, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28130906

RESUMEN

This report reviews the literature of the past decade dealing with the combination of electrokinetic and chromatographic strategies in the proteomic field. Aim of this article is to highlight how the application of complementary techniques may contribute to substantially improve protein identification. Several studies here considered demonstrate that exploring the combination of these approaches can be a strategy to enrich the extent of proteomic information achieved from a sample. The coupling of "top-down" and "bottom-up" proteomics may result in the generation of a hybrid analytical tool, very efficient not only for large-scale profiling of complex proteomes but also for studying specific subproteomes. The range of applications described, while evidencing a continuous boost in the imagination of researchers for developing new combinations of methods for protein separation, also underlines the adaptability of these techniques to a wide variety of samples. This report points out the general usefulness of combining different procedures for proteomic analysis, an approach that allows researchers to go deeper in the proteome of samples under investigation.


Asunto(s)
Electroforesis Capilar/métodos , Electroforesis en Gel Bidimensional/métodos , Proteínas/análisis , Proteómica/métodos , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Humanos , Proteínas/química , Espectrometría de Masas en Tándem
10.
Curr Zool ; 63(6): 657-665, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29492027

RESUMEN

Femoral glands of male lizards produce waxy secretions that are involved in inter- and intraspecific chemical communication. The main components of these secretions are proteins and lipids, the latter having been extensively studied and already associated to male quality. On the opposite, the composition and role of proteins are nearly unknown, the only available information coming from few studies on iguanids. These studies got the conclusion that proteins might have a communicative function, notably they could signal individual identity. A generalization of these findings requires the extension of protein analysis to other lizard families, and the primary detection of some patterns of individual variability. Using the common wall lizard Podarcis muralis as a model species, the protein fraction of the femoral pore secretions was investigated to provide the first characterization of this component in a lacertid lizard and to explore its source of variability, as a first step to support the hypothesized communicative role. Samples of proteins from femoral secretions were collected from 6 Italian populations and subjected to 1-dimensional electrophoresis. The binary vector of the band presence/absence was used to define the individual profiles. Protein fraction is found to have a structured pattern, with both an individual and a population component. Although the former supports the potential communicative role of proteins, the latter offers a double interpretation, phylogenetic or environmental, even though the phylogenetic effect seems more likely given the climatic resemblance of the considered sites. Further studies are necessary to shed light on both these issues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...