Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
ACS Biomater Sci Eng ; 9(5): 2070-2086, 2023 05 08.
Article En | MEDLINE | ID: mdl-34735770

Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body's continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life.


Electric Power Supplies , Wearable Electronic Devices , Humans
2.
ACR Open Rheumatol ; 3(9): 593-600, 2021 Sep.
Article En | MEDLINE | ID: mdl-34296815

OBJECTIVE: Efficiently identifying eligible patients is a crucial first step for a successful clinical trial. The objective of this study was to test whether an approach using electronic health record (EHR) data and an ensemble machine learning algorithm incorporating billing codes and data from clinical notes processed by natural language processing (NLP) can improve the efficiency of eligibility screening. METHODS: We studied patients screened for a clinical trial of rheumatoid arthritis (RA) with one or more International Classification of Diseases (ICD) code for RA and age greater than 35 years, from a tertiary care center and a community hospital. The following three groups of EHR features were considered for the algorithm: 1) structured features, 2) the counts of NLP concepts from notes, 3) health care utilization. All features were linked to dates. We applied random forest and logistic regression with least absolute shrinkage and selection operator penalty against the following two standard approaches: 1) one or more RA ICD code and no ICD codes related to exclusion criteria (ScreenRAICD1 +EX ) and 2) two or more RA ICD codes (ScreenRAICD2 ). To test the portability, we trained the algorithm at one institution and tested it at the other. RESULTS: In total, 3359 patients at Brigham and Women's Hospital (BWH) and 642 patients at Faulkner Hospital (FH) were studied, with 461 (13.7%) eligible patients at BWH and 84 (13.4%) at FH. The application of the algorithm reduced ineligible patients from chart review by 40.5% at the tertiary care center and by 57.0% at the community hospital. In contrast, ScreenRAICD2 reduced patients for chart review by 2.7% to 11.3%; ScreenRAICD1+EX reduced patients for chart review by 63% to 65% but excluded 22% to 27% of eligible patients. CONCLUSION: The ensemble machine learning algorithm incorporating billing codes and NLP data increased the efficiency of eligibility screening by reducing the number of patients requiring chart review while not excluding eligible patients. Moreover, this approach can be trained at one institution and applied at another for multicenter clinical trials.

3.
J Am Med Inform Assoc ; 25(10): 1359-1365, 2018 10 01.
Article En | MEDLINE | ID: mdl-29788308

Objective: Standard approaches for large scale phenotypic screens using electronic health record (EHR) data apply thresholds, such as ≥2 diagnosis codes, to define subjects as having a phenotype. However, the variation in the accuracy of diagnosis codes can impair the power of such screens. Our objective was to develop and evaluate an approach which converts diagnosis codes into a probability of a phenotype (PheProb). We hypothesized that this alternate approach for defining phenotypes would improve power for genetic association studies. Methods: The PheProb approach employs unsupervised clustering to separate patients into 2 groups based on diagnosis codes. Subjects are assigned a probability of having the phenotype based on the number of diagnosis codes. This approach was developed using simulated EHR data and tested in a real world EHR cohort. In the latter, we tested the association between low density lipoprotein cholesterol (LDL-C) genetic risk alleles known for association with hyperlipidemia and hyperlipidemia codes (ICD-9 272.x). PheProb and thresholding approaches were compared. Results: Among n = 1462 subjects in the real world EHR cohort, the threshold-based p-values for association between the genetic risk score (GRS) and hyperlipidemia were 0.126 (≥1 code), 0.123 (≥2 codes), and 0.142 (≥3 codes). The PheProb approach produced the expected significant association between the GRS and hyperlipidemia: p = .001. Conclusions: PheProb improves statistical power for association studies relative to standard thresholding approaches by leveraging information about the phenotype in the billing code counts. The PheProb approach has direct applications where efficient approaches are required, such as in Phenome-Wide Association Studies.


Arthritis, Rheumatoid/genetics , Genetic Association Studies , Hyperlipidemias/genetics , International Classification of Diseases , Phenotype , Arthritis, Rheumatoid/classification , Cholesterol, LDL/genetics , Cohort Studies , Electronic Health Records , Genetic Testing , Humans , Hyperlipidemias/classification , Polymorphism, Single Nucleotide , Probability , Risk
...