Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Sci Rep ; 14(1): 20115, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210078

RESUMEN

A significant number of steep cracks are frequently encountered in underground engineering, posing a threat to operation. The high-pressure grouting method is a commonly utilized repair technique. Nevertheless, conventional grout is prone to displacement due to its weight, making it challenging to ensure adequate filling of the cracks. Therefore, this study aims to develop a grouting material with targeted displacement and anchoring properties. Firstly, an optimal magnetic slurry composition was determined through an orthogonal test. Subsequently, XRD and SEM were used to analyze the impact of the magnetic field on the composition distribution, internal pore structure, and transient viscosity of the slurry. Afterwards, a model for localized grout diffusion under magnetic was established. The results show that the application of a magnetic field caused the slurry to compact due to magnetic forces, reducing its porosity. Moreover, the dynamic viscosity of the slurry increased exponentially with rising magnetic induction intensity. Notably, a 40.5% increase in the diffusion area was observed when the magnetic field intensity rose from 2500 to 4500 GS. The error between the measured and theoretical values of the magnetic slurry diffusion model was only 8.91%, indicating the model's accuracy in describing the slurry diffusion process under magnetic field influence.

2.
Small Methods ; : e2400738, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082595

RESUMEN

Catalytic nanoparticle@metal-organic framework (MOF) composites have attracted significant interest in point-of-care testing (POCT) owing to their prominent catalytic activity. However, the trade-off between high loading efficiency and high catalytic activity remains challenging because high concentrations of nanoparticles tend to cause the misjoining and collapse of the MOFs. Herein, a facile strategy is reported to encapsulate high concentrations of platinum (Pt) nanoparticles into zeolitic imidazolate framework-8 (ZIF-8) using polydopamine (PDA) as a support for Pt@ZIF-8 and as a flexible scaffold for further immobilization of Pt nanoparticles. The resulting composite (Pt@ZIF-8@PDA@Pt) exhibits ultrahigh Pt nanoparticle loading efficiency, exceptional catalytic activity, stability, and a bright colorimetric signal. Following integration with lateral flow immunoassay (LFIA), the detection limits for pre- and post-catalysis detection of B-type natriuretic peptide (NT-proBNP) are 0.18 and 0.015 ng mL-1, respectively, representing a 6-fold and 70-fold improvement compared to gold nanoparticle-based LFIA. Moreover, Pt@ZIF-8@PDA@Pt-based LFIA achieves 100% diagnostic sensitivity for NT-proBNP in a cohort of 184 clinical samples.

3.
Front Public Health ; 12: 1353415, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966699

RESUMEN

Background: The protective effectiveness provided by naturally acquired immunity against SARS-CoV-2 reinfection remain controversial. Objective: To systematically evaluate the protective effect of natural immunity against subsequent SARS-CoV-2 infection with different variants. Methods: We searched for related studies published in seven databases before March 5, 2023. Eligible studies included in the analysis reported the risk of subsequent infection for groups with or without a prior SARS-CoV-2 infection. The primary outcome was the overall pooled incidence rate ratio (IRR) of SARS-CoV-2 reinfection/infection between the two groups. We also focused on the protective effectiveness of natural immunity against reinfection/infection with different SARS-CoV-2 variants. We used a random-effects model to pool the data, and obtained the bias-adjusted results using the trim-and-fill method. Meta-regression and subgroup analyses were conducted to explore the sources of heterogeneity. Sensitivity analysis was performed by excluding included studies one by one to evaluate the stability of the results. Results: We identified 40 eligible articles including more than 20 million individuals without the history of SARS-CoV-2 vaccination. The bias-adjusted efficacy of naturally acquired antibodies against reinfection was estimated at 65% (pooled IRR = 0.35, 95% CI = 0.26-0.47), with higher efficacy against symptomatic COVID-19 cases (pooled IRR = 0.15, 95% CI = 0.08-0.26) than asymptomatic infection (pooled IRR = 0.40, 95% CI = 0.29-0.54). Meta-regression revealed that SARS-CoV-2 variant was a statistically significant effect modifier, which explaining 46.40% of the variation in IRRs. For different SARS-CoV-2 variant, the pooled IRRs for the Alpha (pooled IRR = 0.11, 95% CI = 0.06-0.19), Delta (pooled IRR = 0.19, 95% CI = 0.15-0.24) and Omicron (pooled IRR = 0.61, 95% CI = 0.42-0.87) variant were higher and higher. In other subgroup analyses, the pooled IRRs of SARS-CoV-2 infection were statistically various in different countries, publication year and the inclusion end time of population, with a significant difference (p = 0.02, p < 0.010 and p < 0.010), respectively. The risk of subsequent infection in the seropositive population appeared to increase slowly over time. Despite the heterogeneity in included studies, sensitivity analyses showed stable results. Conclusion: Previous SARS-CoV-2 infection provides protection against pre-omicron reinfection, but less against omicron. Ongoing viral mutation requires attention and prevention strategies, such as vaccine catch-up, in conjunction with multiple factors.


Asunto(s)
COVID-19 , Reinfección , SARS-CoV-2 , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , COVID-19/inmunología , SARS-CoV-2/inmunología , Inmunidad Innata
4.
Inflamm Res ; 73(6): 929-943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642079

RESUMEN

OBJECTIVES: Intimal hyperplasia is a serious clinical problem associated with the failure of therapeutic methods in multiple atherosclerosis-related coronary heart diseases, which are initiated and aggravated by the polarization of infiltrating macrophages. The present study aimed to determine the effect and underlying mechanism by which tumor necrosis factor receptor-associated factor 5 (TRAF5) regulates macrophage polarization during intimal hyperplasia. METHODS: TRAF5 expression was detected in mouse carotid arteries subjected to wire injury. Bone marrow-derived macrophages, mouse peritoneal macrophages and human myeloid leukemia mononuclear cells were also used to test the expression of TRAF5 in vitro. Bone marrow-derived macrophages upon to LPS or IL-4 stimulation were performed to examine the effect of TRAF5 on macrophage polarization. TRAF5-knockout mice were used to evaluate the effect of TRAF5 on intimal hyperplasia. RESULTS: TRAF5 expression gradually decreased during neointima formation in carotid arteries in a time-dependent manner. In addition, the results showed that TRAF5 expression was reduced in classically polarized macrophages (M1) subjected to LPS stimulation but was increased in alternatively polarized macrophages (M2) in response to IL-4 administration, and these changes were demonstrated in three different types of macrophages. An in vitro loss-of-function study with TRAF5 knockdown plasmids or TRAF5-knockout mice revealed high expression of markers associated with M1 macrophages and reduced expression of genes related to M2 macrophages. Subsequently, we incubated vascular smooth muscle cells with conditioned medium of polarized macrophages in which TRAF5 expression had been downregulated or ablated, which promoted the proliferation, migration and dedifferentiation of VSMCs. Mechanistically, TRAF5 knockdown inhibited the activation of anti-inflammatory M2 macrophages by directly inhibiting PPARγ expression. More importantly, TRAF5-deficient mice showed significantly aggressive intimal hyperplasia. CONCLUSIONS: Collectively, this evidence reveals an important role of TRAF5 in the development of intimal hyperplasia through the regulation of macrophage polarization, which provides a promising target for arterial restenosis-related disease management.


Asunto(s)
Hiperplasia , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma , Factor 5 Asociado a Receptor de TNF , Animales , Macrófagos/metabolismo , Factor 5 Asociado a Receptor de TNF/genética , Factor 5 Asociado a Receptor de TNF/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Ratones , Humanos , Arterias Carótidas/patología , Neointima/patología , Neointima/metabolismo , Interleucina-4/genética , Células Cultivadas , Túnica Íntima/patología , Lipopolisacáridos/farmacología
5.
Int J Stroke ; 19(1): 50-57, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37542426

RESUMEN

BACKGROUND: Frailty appears to be associated with unfavorable prognosis after stroke in observational studies, but the causality remains largely unknown. AIMS: The aim of this study is to investigate the potential causal effect of frailty on functional outcome at 3 months after ischemic stroke using the Mendelian randomization (MR) framework. METHODS: Genetic instruments for frailty index were identified in a genome-wide association study meta-analysis including 175,226 individuals of European descent. Corresponding genetic association estimates for functional outcome after ischemic stroke at 90 days were taken from the Genetic of Ischemic Stroke Functional Outcome (GISCOME) network of 6021 patients. We performed inverse-variance weighted MR as the main analyses, followed by several alternate methods and sensitivity analyses. RESULTS: In univariable MR, we found evidence that genetically predicted higher frailty index (odds ratio (OR) = 5.12; 95% confidence interval (CI) = 1.31-20.09; p = 0.019) was associated with worse functional outcome (modified Rankin Scale score ⩾3) after ischemic stroke. In further multivariable MR adjusting for potential confounding traits including body mass index, C-reactive protein, inflammatory bowel disease, and smoking initiation, the overall patterns between genetic liability to frailty and poor functional outcome status remained. Sensitivity analyses with complementary methods and with model unadjusted for baseline stroke severity (OR = 4.19; 95% CI = 1.26-13.90; p = 0.019) yielded broadly concordant results. CONCLUSIONS: The present MR study suggested a possible causal effect of frailty on poor functional outcome after ischemic stroke. Frailty might represent a potential target for intervention to improve recovery after ischemic stroke.


Asunto(s)
Fragilidad , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular Isquémico/complicaciones , Estudio de Asociación del Genoma Completo , Fragilidad/genética , Fragilidad/complicaciones , Fenotipo , Polimorfismo de Nucleótido Simple
6.
Am J Hypertens ; 37(3): 230-238, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37864839

RESUMEN

BACKGROUND: Increased reactive oxygen species (ROS) and oxidative stress response lead to cardiomyocyte hypertrophy and apoptosis, which play crucial roles in the pathogenesis of heart failure. The purpose of current research was to explore the role of antioxidant N-acetylcysteine (NAC) on cardiomyocyte dysfunction and the underlying molecular mechanisms. METHODS AND RESULTS: Compared with control group without NAC treatment, NAC dramatically inhibited the cell size of primary cultured neonatal rat cardiomyocytes (NRCMs) tested by immunofluorescence staining and reduced the expression of representative markers associated with hypertrophic, fibrosis and apoptosis subjected to phenylephrine administration examined by reverse transcription-polymerase chain reaction (RT-PCR) and western blot. Moreover, enhanced ROS expression was attenuated, whereas activities of makers related to oxidative stress response examined by individual assay Kits, including total antioxidation capacity (T-AOC), glutathione peroxidase (GSH-Px), and primary antioxidant enzyme Superoxide dismutase (SOD) were induced by NAC treatment in NRCMs previously treated with phenylephrine. Mechanistically, we noticed that the protein expression levels of phosphorylated phosphatidylinositol 3-kinase (PI3K) and AKT were increased by NAC stimulation. More importantly, we identified that the negative regulation of NAC in cardiomyocyte dysfunction was contributed by PI3K/AKT signaling pathway through further utilization of PI3K/AKT inhibitor (LY294002) or agonist (SC79). CONCLUSIONS: Collected, NAC could attenuate cardiomyocyte dysfunction subjected to phenylephrine, partially by regulating the ROS-induced PI3K/AKT-dependent signaling pathway.


Asunto(s)
Acetilcisteína , Fosfatidilinositol 3-Quinasa , Ratas , Animales , Fosfatidilinositol 3-Quinasa/metabolismo , Acetilcisteína/farmacología , Acetilcisteína/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Fenilefrina/farmacología , Transducción de Señal , Estrés Oxidativo , Apoptosis
7.
Hepatology ; 79(1): 167-182, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37368993

RESUMEN

BACKGROUND AND AIMS: Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS: Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.


Asunto(s)
Hepatitis B Crónica , Humanos , Antivirales , Interferón-alfa , Transcriptoma , Análisis de Secuencia de ARN , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Antígenos e de la Hepatitis B , ADN Viral
8.
Eur Stroke J ; 9(1): 235-243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37905729

RESUMEN

INTRODUCTION: The role of serum uric acid (UA) levels in the functional recovery of ischemic stroke remains uncertain. To evaluate whether UA could predict clinical outcomes in patients with ischemic stroke. PATIENTS AND METHODS: A three-stage study design was employed, combining a large-scale prospective cohort study, a meta-analysis and a Mendelian randomization (MR) analysis. Firstly, we conducted a cohort study using data from the Nanjing Stroke Registry Program (NSRP) to assess the association between UA levels and 3-month functional outcomes in ischemic stroke patients. Secondly, the meta-analysis was conducted to integrate currently available cohort evidence. Lastly, MR analysis was utilized to explore whether genetically determined UA had a causal link to the functional outcomes of ischemic stroke using summary data from the CKDGen and GISCOME datasets. RESULTS: In the first stage, the cohort study included 5631 patients and found no significant association between UA levels and functional outcomes at 3 months after ischemic stroke. In the second stage, the meta-analysis, including 10 studies with 14,657 patients, also showed no significant association between UA levels and stroke prognosis. Finally, in the third stage, MR analysis using data from 6165 patients in the GISCOME study revealed no evidence of a causal relationship between genetically determined UA and stroke functional outcomes. DISCUSSION AND CONCLUSION: Our comprehensive triangulation approach found no significant association between UA levels and functional outcomes at 3 months after ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ácido Úrico , Accidente Cerebrovascular Isquémico/genética , Estudios de Cohortes , Estudios Prospectivos , Análisis de la Aleatorización Mendeliana , Pronóstico , Accidente Cerebrovascular/epidemiología
9.
Sci Rep ; 13(1): 21787, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066109

RESUMEN

Traumatic or degenerative joint pain is abundant in the population. Symptom relief by intra- and periarticular glucocorticoid administration is frequently used, however may have potentially devastating effects, changing the normal healing process of the joint. Mesenchymal stem cells (MSCs) are important for wound-healing processes due to their multipotency in regenerating osteoblasts, chondrocytes and adipocytes but also have immunomodulatory properties. The aim of this study was to investigate the impact of triamcinolone acetonide (TA) a common glucocorticoid administrated intra- and periarticularly, on human bone marrow derived MSC viability, functionality, multi-lineage differentiation and transcriptomic output. We found that TA treatment induced apoptosis and promoted adipogenesis while impairing chondrogenesis of MSCs. RNA sequencing indicated that TA modulated the inflammatory response of MSCs, which may have an impact on the immunologic environment where the inflammatory phase is a physiological part of the natural healing process. These data indicate that triamcinolone acetonide should be used with consideration bearing the patient's outcome in mind, with the intention to optimize joint recovery and homeostasis.


Asunto(s)
Células Madre Mesenquimatosas , Triamcinolona Acetonida , Humanos , Triamcinolona Acetonida/farmacología , Glucocorticoides/farmacología , Diferenciación Celular , Adipogénesis/genética , Células de la Médula Ósea
10.
Hortic Res ; 10(11): uhad195, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023482

RESUMEN

With the advancements in high-throughput sequencing technologies such as Illumina, PacBio, and 10X Genomics platforms, and gas/liquid chromatography-mass spectrometry, large volumes of biological data in multiple formats can now be obtained through multi-omics analysis. Bioinformatics is constantly evolving and seeking breakthroughs to solve multi-omics problems; however, it is challenging for most experimental biologists to analyse data using command-line interfaces, coding, and scripting. Based on experience with multi-omics, we have developed OmicsSuite, a desktop suite that comprehensively integrates statistics and multi-omics analysis and visualization. The suite has 175 sub-applications in 12 categories, including Sequence, Statistics, Algorithm, Genomics, Transcriptomics, Enrichment, Proteomics, Metabolomics, Clinical, Microorganism, Single Cell, and Table Operation. We created the user interface with Sequence View, Table View, and intelligent components based on JavaFX and the popular Shiny framework. The multi-omics analysis functions were developed based on BioJava and 300+ packages provided by the R CRAN and Bioconductor communities, and it encompasses over 3000 adjustable parameter interfaces. OmicsSuite can directly read multi-omics raw data in FastA, FastQ, Mutation Annotation Format, mzML, Matrix, and HDF5 formats, and the programs emphasize data transfer directions and pipeline analysis functions. OmicsSuite can produce pre-publication images and tables, allowing users to focus on biological aspects. OmicsSuite offers multi-omics step-by-step workflows that can be easily applied to horticultural plant breeding and molecular mechanism studies in plants. It enables researchers to freely explore the molecular information contained in multi-omics big data (Source: https://github.com/OmicsSuite/, Website: https://omicssuite.github.io, v1.3.9).

12.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5014-5023, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802843

RESUMEN

The chemical constituents from the stems and leaves of Cratoxylum cochinchinense were isolated and purified using silica gel, ODS gel, and Sephadex LH-20 gel column chromatography, as well as preparative HPLC. The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, and the comparison of their physicochemical and spectroscopic data with the reported data in literature. As a result, 21 compounds were isolated from the 90% ethanol extract of the stems and leaves of C. cochinchinense, which were identified as cratocochine(1), 1-hydroxy-3,7-dimethoxyxanthone(2), 1-hydroxy-5,6,7-trimethoxyxanthone(3), ferrxanthone(4), 3,6-dihydroxy-1,5-dimethoxyxanthone(5), 3,6-dihydroxy-1,7-dimethoxyxanthone(6), 1,2,5-trihydroxy-6,8-dimethoxyxanthone(7), securixanthone G(8), gentisein(9), 3,7-dihydroxy-1-methoxyxanthone(10), pancixanthone B(11), garcimangosxanthone A(12), pruniflorone L(13), 9-hydroxy alabaxanthone(14), cochinchinone A(15), luteolin(16), 3,5'-dimethoxy-4',7-epoxy-8,3'-neolignane-5,9,9'-triol(17), N-benzyl-9-oxo-10E,12E-octadecadienamide(18), 15-hydroxy-7,13E-labdadiene(19), stigmasta-4,22-dien-3-one(20), and stigmast-5-en-3ß-ol(21). Among these isolates, compound 1 was a new xanthone, compounds 2-5, 7, 8, 12, and 16-21 were isolated from the Cratoxylum plant for the first time, and compounds 11 and 13 were obtained from C. cochinchinense for the first time. Furthermore, all isolated compounds 1-21 were appraised for their anti-rheumatoid arthritis activities by MTS method through measuring their anti-proliferative effect on synoviocytes in vitro. As a result, xanthones 1-15 displayed notable anti-rheumatoid arthritis activities, which showed inhibitory effects on the proliferation of MH7A synoviocytes with the IC_(50) values ranging from(8.98±0.12) to(228.68±0.32) µmol·L~(-1).


Asunto(s)
Artritis , Clusiaceae , Sinoviocitos , Xantonas , Clusiaceae/química , Xantonas/farmacología , Xantonas/análisis , Hojas de la Planta/química , Proliferación Celular
13.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37651203

RESUMEN

Lung cancer progression relies on angiogenesis, which is a response to hypoxia typically coordinated by hypoxia-inducible transcription factors (HIFs), but growing evidence indicates that transcriptional programs beyond HIFs control tumor angiogenesis. Here, we show that the redox-sensitive transcription factor BTB and CNC homology 1 (BACH1) controls the transcription of a broad range of angiogenesis genes. BACH1 is stabilized by lowering ROS levels; consequently, angiogenesis gene expression in lung cancer cells, tumor organoids, and xenograft tumors increased substantially following administration of vitamins C and E and N-acetylcysteine in a BACH1-dependent fashion under normoxia. Moreover, angiogenesis gene expression increased in endogenous BACH1-overexpressing cells and decreased in BACH1-knockout cells in the absence of antioxidants. BACH1 levels also increased upon hypoxia and following administration of prolyl hydroxylase inhibitors in both HIF1A-knockout and WT cells. BACH1 was found to be a transcriptional target of HIF1α, but BACH1's ability to stimulate angiogenesis gene expression was HIF1α independent. Antioxidants increased tumor vascularity in vivo in a BACH1-dependent fashion, and overexpressing BACH1 rendered tumors sensitive to antiangiogenesis therapy. BACH1 expression in tumor sections from patients with lung cancer correlated with angiogenesis gene and protein expression. We conclude that BACH1 is an oxygen- and redox-sensitive angiogenesis transcription factor.


Asunto(s)
Antioxidantes , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Neoplasias Pulmonares , Humanos , Antioxidantes/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Hipoxia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Animales , Ratones
14.
J Clin Transl Hepatol ; 11(5): 1003-1010, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37577218

RESUMEN

Background and Aims: A functional cure, or hepatitis B virus (HBV) surface antigen (HBsAg) loss, is difficult to achieve in patients with hepatitis B virus e antigen (HBeAg)-positive chronic hepatitis B. The HBV vaccine and granulocyte-macrophage colony-stimulating factor (GM-CSF) have been reported to help reduce HBsAg levels and promote HBsAg loss. In this prospective randomized trial, we evaluated HBsAg loss in patients receiving pegylated interferon-α2b (PEGIFN-α2b) and tenofovir disoproxil fumarate (TDF), with and without GM-CSF and HBV vaccination. Methods: A total of 287 patients with HBeAg positive chronic hepatitis B and seroconversion after nucleot(s)ide analog treatment were assigned randomly to three treatment groups for 48 weeks, TDF alone (control), PEGIFN-α2b + TDF, and PEGIFN-α2b + TDF + GM-CSF + HBV vaccine. The primary endpoints were the proportions of patients with HBsAg loss and seroconversion at 48 and 72 weeks. Results: The cumulative HBsAg loss rates in the control, PEGIFN-α2b + TDF, and PEGIFN-α2b + TDF + GM-CSF + HBV vaccine groups at week 48 were 0.0%, 28.3%, and 41.1%, respectively. The cumulative HBsAg seroconversion rates in these groups at week 48 were 0.0%, 21.7%, and 33.9%, respectively. Multivariate regression analysis showed that GM-CSF use plus HBV vaccination was significantly associated with HBsAg loss (p=0.017) and seroconversion (p=0.030). Conclusions: In patients with HBeAg-positive chronic hepatitis B and seroconversion after nucleot(s)ide analog treatment, immunomodulatory/antiviral treatment regimens effectively improved HBsAg loss, and the regimen including GM-CSF and HBV vaccination was most effective.

15.
Int J Exp Pathol ; 104(5): 237-246, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37431082

RESUMEN

Recently macrophage polarization has emerged as playing an essential role in the oathogenesis of atherosclerosis, which is the most important underlying process in many types of cardiovascular diseases. Although Nek6 has been reported to be involved in various cellular processes, the effect of Nek6 on macrophage polarization remains unknown. Macrophages exposed to lipopolysaccharide (LPS) or IL-4 were used to establish an in vitro model for the study of regulation of classically (M1) or alternatively (M2) activated macrophage. Bone marrow-derived macrophages (BMDMs) transfected with short hairpin RNA-targeting Nek6 were then in functional studies. We observed that Nek6 expression was decreased in both peritoneal macrophages (PMs) and BMDMs stimulated by LPS. This effect was seen at both mRNA and protein level. The opposite results were obtained after administration of IL-4. Macrophage-specific Nek6 knockdown significantly exacerbated pro-inflammatory M1 polarized macrophage gene expression in response to LPS challenge, but the anti-inflammatory response gene expression that is related to M2 macrophages was attenuated by Nek6 silencing followed by treatment with IL-4. Mechanistic studies exhibited that Nek6 knockdown inhibited the phosphorylated STAT3 expression that mediated the effect on macrophage polarization regulated by AdshNek6. Moreover, decreased Nek6 expression was also observed in atherosclerotic plaques. Collectively, these evidences suggested that Nek6 acts as a crucial site in macrophage polarization, and that this operates in a STAT3-dependent manner.


Asunto(s)
Macrófagos , Quinasas Relacionadas con NIMA , Factor de Transcripción STAT3 , Interleucina-4/farmacología , Interleucina-4/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Fenotipo , ARN Interferente Pequeño , Animales , Ratones , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Factor de Transcripción STAT3/metabolismo
16.
J Exp Med ; 220(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37516911

RESUMEN

Leukemia cutis or leukemic cell infiltration in skin is one of the common extramedullary manifestations of acute myeloid leukemia (AML) and signifies a poorer prognosis. However, its pathogenesis and maintenance remain understudied. Here, we report massive AML cell infiltration in the skin in a transplantation-induced MLL-AF9 AML mouse model. These AML cells could regenerate AML after transplantation. Prospective niche characterization revealed that skin harbored mesenchymal progenitor cells (MPCs) with a similar phenotype as BM mesenchymal stem cells. These skin MPCs protected AML-initiating stem cells (LSCs) from chemotherapy in vitro partially via mitochondrial transfer. Furthermore, Lama4 deletion in skin MPCs promoted AML LSC proliferation and chemoresistance. Importantly, more chemoresistant AML LSCs appeared to be retained in Lama4-/- mouse skin after cytarabine treatment. Our study reveals the characteristics and previously unrecognized roles of skin mesenchymal niches in maintaining and protecting AML LSCs during chemotherapy, meriting future exploration of their impact on AML relapse.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Animales , Ratones , Estudios Prospectivos , Células Madre , Piel
17.
Arthritis Res Ther ; 25(1): 87, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237413

RESUMEN

BACKGROUND: Dopamine is a neurotransmitter and has been found to regulate lymphocytes by acting on dopamine receptors (DRs). CD4+ T cells express all the five subtypes of DRs, D1R to D5R. Although CD4+ T cells have been involved in pathogenesis of rheumatoid arthritis (RA), roles of DRs expressed on these cells in RA are poorly understood. This study determined whether D2R expressed on CD4+ T cells regulates inflammatory responses and signs in collagen type II (CII)-induced arthritis (CIA), a mouse model of RA. METHODS: DBA/1 mice and C57BL/6 mice with global D1r or D2r deficiency (D1r-/- or D2r-/-) or CD4+ T cell-specific D2r deletion (D2rfl/fl/CD4Cre) were used to prepare CIA model by intradermal injection of CII. D2R agonist sumanirole was intraperitoneally administered in CIA mice. CD4+ T cells obtained from CIA mice were exposed to sumanirole or/and D2R antagonist L-741,626 in vitro. Arthritic symptoms were assessed by clinical arthritis scores. Flow cytometric assay measured frequencies of CD4+ T cell subsets (Th1, Th2, Th17 and Treg cells). Expression of specific transcription factors for the CD4+ T cell subsets was tested by Western blot. Cytokine production was estimated by quantitative PCR and ELISA. RESULTS: CIA mice manifested a bias of CD4+ T cells towards Th1 and Th17 cells. D2r-/- CIA mice showed a stronger bias towards Th1 and Th17 phenotypes than CIA mice, while D1r-/- CIA mice did not show the changes. CD4+ T cell-specific D2r deletion exacerbated both the polarization towards Th1 and Th17 cells and the symptoms of arthritis. Sumanirole administration in CIA mice ameliorated the bias of CD4+ T cells towards Th1 and Th17 phenotypes as well as arthritic symptoms. Sumanirole treatment of in vitro CD4+ T cells obtained from CIA mice promoted the shift to Treg cells, and the effect of sumanirole was blocked by L-741,626. CONCLUSIONS: D2R expressed on CD4+ T cells is protective against imbalance between pro-inflammatory and anti-inflammatory T cells and arthritic symptoms in CIA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Receptores de Dopamina D2 , Animales , Ratones , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Receptores de Dopamina D2/metabolismo , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo
18.
ACS Nano ; 17(11): 10748-10759, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37195286

RESUMEN

Nanoparticle-natural enzyme complexes are receiving increasing attention as the promising signal reporters for colorimetric lateral flow immunoassay (LFIA). Nonetheless, it remains a challenge to develop the nanocomplexes with high loading efficiency, catalytic efficiency, and colorimetric signal brightness. Herein, inspired by pomegranate structure, we reported the synthesis of a colorimetric catalytic nanocomplex ((HRP@ZIF-8)3@PDA@HRP), using dopamine flexible scaffold-coated multishell porous zeolitic imidazolate framework-8 (ZIF-8) as a hierarchical scaffold to encapsulate horseradish peroxidase (HRP), and described its potential to promote an ultrasensitive colorimetric LFIA of cardiac troponin I (cTnI). (HRP@ZIF-8)3@PDA@HRP exhibited ultrahigh HRP loading efficiency and catalytic activity due to the epitaxial shell-by-shell overgrowth of porous ZIF-8 scaffold, which provided more cavities for enzyme immobilization and a diffusion path for the catalytic substrate. Furthermore, the polydopamine (PDA) layer on the (HRP@ZIF-8)3 surface both enhanced the colorimetric signal brightness and acted as a flexible scaffold to immobilize HRP, further increasing the amount of enzyme. Following integration with LFIA, the developed platform achieved an ultrasensitive colorimetric test strip assay for cTnI with pre- and postcatalytic naked-eye detection sensitivities of 0.5 ng mL-1 and 0.01 ng mL-1, respectively, which were 4/2- and 200/100-fold higher than gold nanoparticles (AuNPs)/PDA-based LFIA and comparable to chemiluminescence immunoassay. Further, the quantitative testing results of the developed colorimetric LFIA on 57 clinical serum samples agreed well with the clinical data. This work provides ideas for the design of natural enzymes-based colorimetric catalytic nanocomplex to encourage applications for the development of ultrasensitive LFIA for early diseases diagnosis.


Asunto(s)
Nanopartículas del Metal , Granada (Fruta) , Zeolitas , Peroxidasa de Rábano Silvestre/química , Oro/química , Dopamina , Zeolitas/química , Biónica , Porosidad , Nanopartículas del Metal/química , Inmunoensayo/métodos , Límite de Detección
19.
Blood ; 142(1): 73-89, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37018663

RESUMEN

Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leukemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing disease persistence and relapse. Evidence indicates that LSC persistence may be because of bone marrow (BM) niche protection; however, little is known about the underlying mechanisms. Herein, we molecularly and functionally characterize BM niches in patients with CML at diagnosis and reveal the altered niche composition and function in these patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells from patients with CML displayed an enhanced supporting capacity for normal and CML BM CD34+CD38- cells. Molecularly, RNA sequencing detected dysregulated cytokine and growth factor expression in the BM cellular niches of patients with CML. Among them, CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM. Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Importantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.


Asunto(s)
Médula Ósea , Leucemia Mielógena Crónica BCR-ABL Positiva , Animales , Ratones , Médula Ósea/metabolismo , Quimiocinas CXC/metabolismo , Quimiocinas CXC/farmacología , Quimiocinas CXC/uso terapéutico , Citocinas/metabolismo , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Células Madre Neoplásicas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal
20.
Aging (Albany NY) ; 15(6): 2136-2157, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36961395

RESUMEN

Cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes the cell senescence regulator protein p16. The expression of p16 raises in cell senescence and has a nuclear regulation in cell aging. Meanwhile, it's also reported to inhibit the aggression of several cancers. But its clinical application and role in cancer immunotherapy needs further investigation. We collected the transcriptional data of pan-cancer and normal human tissues from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. CBioPortal webtool was employed to mine the genomic alteration status of CDKN2A across cancers. Kaplan-Meier method and univariate Cox regression were performed for prognostic assessments across cancers, respectively. Gene Set Enrichment Analysis is the main method used to search the associated cancer hallmarks associated with CDKN2A. TIMER2.0 was used to analyze the immune cell infiltration relevance with CDKN2A in pan-cancer. The associations between CDKN2A and immunotherapy biomarkers or regulators were performed by spearman correlation analysis. We found CDKN2A is overexpressed in most cancers and exhibits prognosis predictive ability in various cancers. In addition, it is significantly correlated with immune-activated hallmarks, cancer immune cell infiltrations and immunoregulators. The most interesting finding is that CDKN2A can significantly predict anti-PDL1 therapy response. Finally, specific inhibitors which correlated with CDKN2A expression in different cancer types were also screened by using Connectivity Map (CMap) tool. The results revealed that CDKN2A acts as a robust cancer prognostic and immunotherapy biomarker. Its function in the regulation of cancer cell senescence might shape the tumor microenvironment and contribute to its predictive ability of immunotherapy.


Asunto(s)
Neoplasias , Humanos , Pronóstico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Genes p16 , Biomarcadores , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Senescencia Celular/genética , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA