Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 88
1.
J Am Chem Soc ; 146(20): 14203-14212, 2024 May 22.
Article En | MEDLINE | ID: mdl-38733560

Nanomedicines often rely on noncovalent self-assembly and encapsulation for drug loading and delivery. However, challenges such as reproducibility issues due to the multicomponent nature, off-target activation caused by premature drug release, and complex pharmacokinetics arising from assembly dissociation have hindered their clinical translation. In this study, we introduce an innovative design concept termed single molecular nanomedicine (SMNM) based on macrocyclic carrier-drug conjugates. Through the covalent linkage of two chemotherapy drugs to a hypoxia-cleavable macrocyclic carrier, azocalix[4]arene, we obtained two self-included complexes to serve as SMNMs. The intramolecular inclusion feature of the SMNMs has not only demonstrated comprehensive shielding and protection for the drugs but also effectively prevented off-target drug leakage, thereby significantly reducing their side effects and enhancing their antitumor therapeutic efficacy. Additionally, the attributes of being a single component and molecularly dispersed confer advantages such as ease of preparation and good reproducibility for SMNMs, which is desirable for clinical applications.


Antineoplastic Agents , Calixarenes , Drug Carriers , Nanomedicine , Humans , Drug Carriers/chemistry , Nanomedicine/methods , Calixarenes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Animals , Macrocyclic Compounds/chemistry , Mice , Cell Line, Tumor , Drug Liberation
2.
Angew Chem Int Ed Engl ; : e202406233, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38591161

The precise recognition and sensing of steroids, a type of vital biomolecules, hold immense practical value across various domains. In this study, we introduced corral[4]BINOLs (C[4]BINOLs), a pair of enantiomeric conjugated deep-cavity hosts, as novel synthetic receptors for binding steroids. Due to the strong hydrophobic effect of their deep nonpolar, chiral cavities, the two enantiomers of C[4]BINOLs demonstrated exceptionally high recognition affinities (up to 1012 M-1) for 16 important steroidal compounds as well as good enantioselectiviy (up to 15.5) in aqueous solutions, establishing them as the most potent known steroid receptors. Harnessing their ultrahigh affinity, remarkable enantioselectivity, and fluorescence emission properties, the two C[4]BINOL enantiomers were employed to compose a fluorescent sensor array which achieved discrimination and sensing of 16 structurally similar steroids at low concentrations.

3.
Angew Chem Int Ed Engl ; 63(23): e202402139, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38563765

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.


Avidin , Biotin , Calixarenes , Hydrophobic and Hydrophilic Interactions , Calixarenes/chemistry , Biotin/chemistry , Avidin/chemistry , Avidin/metabolism , Humans , Surface Properties , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/metabolism , Delayed-Action Preparations/chemistry , Phenols/chemistry
4.
Biologicals ; 85: 101751, 2024 Feb.
Article En | MEDLINE | ID: mdl-38387156

Viral clearance steps are routinely included in monoclonal antibody purification processes to safeguard product from potential virus contamination. These steps are often experimentally studied using product-specific feeds and parameters for each project to demonstrate viral clearance capability. However, published evidence suggests that viral clearance capability of many of these steps are not significantly impacted by variations in feed material or process parameter within commonly used ranges. The current investigation confirms robust retrovirus inactivation by low pH treatment and parvovirus removal by second-generation virus filters, independent to individual antibody molecules. Our results also reveal robust retrovirus removal by flowthrough anion exchange chromatography, inside the limits of protein load and host cell protein content. The cumulative viral clearance capability from these steps leads to an excess clearance safety factor of 10,000-fold for endogenous retrovirus-like particles. These results further justify the use of prior knowledge-based modular viral clearance estimation as opposed to repetitive experimentation.


Endogenous Retroviruses , Parvovirus , Viruses , Antibodies, Monoclonal , Filtration
5.
Angew Chem Int Ed Engl ; 63(5): e202317402, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38078790

The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109  M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011  M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108  M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.

6.
Biologicals ; 85: 101741, 2024 Feb.
Article En | MEDLINE | ID: mdl-38157678

An essential step in pharmaceutical product development is screening for contamination with adventitious agents, and there is desire to develop highly sensitive assays to detect adventitious viral nucleic acid. This study sought to examine the nucleic acid extraction efficiency of three viral candidates in relevant background matrices using four different extraction methods. Three model adventitious viruses, Minute virus of Mice, Porcine Circovirus, and Feline Leukemia Virus, were diluted within a variety of background matrices relevant to pharmaceutical production methods. Upon extraction, the nucleic acid was quantified using droplet digital PCR methods. Four nucleic acid extraction methods were assessed, including commercially available kits and manual extraction methods. Each method recovered nucleic acid post-extraction for each of the model viruses within the tested background matrices. The silica-column based method recovered a greater amount of viral nucleic acid, compared to the other methods tested. Similar trends were observed when model virus was diluted in bioreactor supernatant, which replicates industry testing conditions and provides details on which extraction methods might be used in Next Generation Sequencing and PCR methods for detecting contamination within pharmaceutical products.


DNA, Viral , Viruses , Animals , Mice , DNA, Viral/genetics , Viruses/genetics , Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing/methods , Drug Contamination/prevention & control
7.
Angew Chem Int Ed Engl ; 62(51): e202315990, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-37917047

Accurately distinguishing between enantiomeric molecules is a fundamental challenge in the field of chemistry. However, there is still significant room for improvement in both the enantiomeric selectivity (KR(S) /KS(R) ) and binding strength of most reported macrocyclic chiral receptors to meet the demands of practical application scenarios. Herein, we synthesized a water-soluble conjugated tubular host-namely, corral[4]BINOL-using a chiral 1,1'-bi-2-naphthol (BINOL) derivative as the repeating unit. The conjugated chiral backbone endows corral[4]BINOL with good fluorescent emission (QY=34 % ) and circularly polarized luminescence (|glum | up to 1.4×10-3 ) in water. Notably, corral[4]BINOL exhibits high recognition affinity up to 8.6×1010  M-1 towards achiral guests in water, and manifested excellent enantioselectivity up to 18.7 towards chiral substrates, both of which represent the highest values observed among chiral macrocycles in aqueous solution. The ultrastrong binding strength, outstanding enantioselectivity, and facile accessibility, together with the superior fluorescent and chiroptical properties, endow corral[4]BINOL with great potential for a wide range of applications.

8.
BMC Pediatr ; 23(1): 496, 2023 10 02.
Article En | MEDLINE | ID: mdl-37784062

BACKGROUND: The presence of Staphylococcus aureus in the bloodstream can lead to the development of sepsis; however, the severity and risk factors of the systemic inflammatory response to Staphylococcus aureus bloodstream infections were unclear. This study is aimed to build a model to predict the risk of sepsis in children with Staphylococcus aureus bloodstream infections. METHODS: A retrospective analysis of hospitalized pediatric patients diagnosed with Staphylococcus aureus bloodstream infections was performed between January 2013 and December 2019. Each patient was assessed using the pediatric version of the Sequential Organ Failure Assessment score (pSOFA) within 24 h of blood culture collection. A nomogram based on logistic regression models was constructed to predict the risk factors for sepsis in children with Staphylococcus aureus bloodstream infections. It was validated using the area under the receiver-operating characteristic curve (AUC). RESULTS: Of the 94 patients included in the study, 35 cases (37.2%) developed sepsis. The pSOFA scores ranged from 0 to 8, with 35 patients having a pSOFA score of ≥ 2. Six children (6.4%) died within 30 days, who were all from the sepsis group and had different pSOFA scores. The most common organs involved in sepsis in children with staphylococcal bloodstream infections were the neurologic system (68.6%), respiratory system (48.6%), and coagulation system (45.7%). Hospital-acquired infections (adjusted odds ratio [aOR], 3.0; 95% confidence interval [CI], 1.3-7.2), implanted catheters (aOR, 10.4; 95% CI, 3.8-28.4), procalcitonin level ≥ 1.7 ng/mL (aOR, 15.4; 95% CI, 2.7-87.1), and underlying diseases, especially gastrointestinal malformations (aOR, 14.0; 95% CI, 2.9-66.7) were associated with Staphylococcus aureus sepsis. However, methicillin-resistant Staphylococcus aureus infection was not a risk factor for sepsis. The nomogram had high predictive accuracy for the estimation of sepsis risk, with an AUC of 0.85. CONCLUSIONS: We developed a predictive model for sepsis in children with Staphylococcus aureus infection.


Methicillin-Resistant Staphylococcus aureus , Sepsis , Staphylococcal Infections , Humans , Child , Staphylococcus aureus , Retrospective Studies , Sepsis/complications , Sepsis/diagnosis , Staphylococcal Infections/complications , Staphylococcal Infections/diagnosis
9.
J Am Chem Soc ; 145(18): 10061-10070, 2023 May 10.
Article En | MEDLINE | ID: mdl-37098077

Triplet-triplet annihilation-based molecular photon upconversion (TTA-UC) is a photophysical phenomenon that can yield high-energy emitting photons from low-energy incident light. TTA-UC is believed to fuse two triplet excitons into a singlet exciton through several consecutive energy-conversion processes. When organic aromatic dyes─i.e., sensitizers and annihilators─are used in TTA-UC, intermolecular distances, as well as relative orientations between the two chromophores, are important in an attempt to attain high upconversion efficiencies. Herein, we demonstrate a host-guest strategy─e.g., a cage-like molecular container incorporating two porphyrinic sensitizers and encapsulating two perylene emitters inside its cavity─to harness photon upconversion. Central to this design is tailoring the cavity size (9.6-10.4 Å) of the molecular container so that it can host two annihilators with a suitable [π···π] distance (3.2-3.5 Å). The formation of a complex with a host:guest ratio of 1:2 between a porphyrinic molecular container and perylene was confirmed by NMR spectroscopy, mass spectrometry, and isothermal titration calorimetry (ITC) as well as by DFT calculations. We have obtained TTA-UC yielding blue emission at 470 nm when the complex is excited with low-energy photons. This proof-of-concept demonstrates that TTA-UC can take place in one supermolecule by bringing together the sensitizers and annihilators. Our investigations open up some new opportunities for addressing several issues associated with supramolecular photon upconversion, such as sample concentrations, molecular aggregation, and penetration depths, which have relevance to biological imaging applications.

10.
Biotechnol Bioeng ; 120(7): 1869-1881, 2023 07.
Article En | MEDLINE | ID: mdl-36950907

Next-generation manufacturing (NGM) has evolved over the past decade to a point where large biopharmaceutical organizations are making large investments in the technology and considering implementation in clinical and commercial processes. There are many well-considered reasons to implement NGM. For the most part, organizations will not fund NGM unless the implementation benefits the funding organization by providing reduced costs, reduced time, or additional needed capabilities. Productivity improvements gained from continuous purification are shown in this work, which used a new system that fully integrates and automates several downstream unit operations of a biopharmaceutical process to provide flexibility and easy implementation of NGM. The equipment and automation needed to support NGM can be complicated and expensive. Biopharmaceutical Process Development considered two options as follows: (1) design its own NGM system or (2) buy a prebuilt system. PAK BioSolutions offers a turn-key automated and integrated system that can operate up to four continuous purification stages simultaneously, while maintaining a small footprint in the manufacturing plant. The system provides significant cost benefits (~10× lower) compared with the alternative-integration of many different pieces of equipment through a Distributed Control System that would require significant engineering time for design, automation, and integration. Integrated and Continuous Biomanufacturing can lead to significant reductions in facility size, reduced manufacturing costs, and enhanced product quality when compared with the traditional batch mode of operation. The system uses new automation strategies that robustly link unit operations. We present the optimized process fit, sterility and bioburden control strategy, and automation features (such as pH feedback control and in-line detergent addition), which enabled continuous operation of a 14-day end-to-end monoclonal antibody purification process at the clinical manufacturing scale.


Antibodies, Monoclonal , Biological Products , Bioreactors , Cost-Benefit Analysis , Automation
11.
Nature ; 613(7943): 280-286, 2023 01.
Article En | MEDLINE | ID: mdl-36631649

Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors1-3 that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane4,5, in which two cyclobis(paraquat-p-phenylene)6 (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet7,8, whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by FOF1 ATP synthase9. The unidirectionality is powered by an oscillating10 voltage11,12 or external modulation of the redox potential13. Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound14 electric molecular motors.

12.
World J Pediatr ; 19(2): 129-138, 2023 Feb.
Article En | MEDLINE | ID: mdl-36562929

BACKGROUND: We aimed to evaluate the tolerability and efficacy of linezolid in children for treating suspected and diagnosed Gram-positive bacterial infections. METHODS: A systematic literature search was conducted up to April 23, 2021, using linezolid and its synonyms as search terms. Two reviewers independently identified and extracted relevant randomized controlled trials and prospective cohort studies. The extracted studies were included in a single-rate meta-analysis of adverse events and clinical outcomes using random-effects models. RESULTS: A total of 1082 articles were identified, and nine studies involving 758 children were included in the meta-analysis. The overall proportion of adverse events was 8.91% [95% confidence interval (CI) = 1.64%-36.52%], with diarrhea (2.24%), vomiting (2.05%), and rash (1.72%) being the most common. The incidences of thrombocytopenia and anemia were 0.68% and 0.16%, respectively. Some specific adverse events, including rash and gastrointestinal events, were more frequent in the oral administration subgroup. In terms of efficacy, the overall proportion of clinical improvement was 88.80% (95% CI = 81.31%-93.52%). Children with a history of specific bacteriological diagnosis or concomitant antibiotic therapy had a 1.13-fold higher clinical improvement than children without such histories. The proportion of microbial eradication was 92.68% (95% CI = 84.66%-96.68%). The proportion of all-cause mortality was 0.16% (95% CI = 0.00%-7.75%). CONCLUSIONS: Linezolid was well-tolerated in pediatric patients and was associated with a low frequency of adverse events, such as anemia, thrombocytopenia, and neutropenia. Moreover, linezolid was effective in children with diagnosed and suspected Gram-positive infections.


Anti-Bacterial Agents , Diarrhea , Child , Humans , Linezolid/adverse effects , Prospective Studies , Anti-Bacterial Agents/adverse effects , Treatment Outcome
13.
Angew Chem Int Ed Engl ; 62(2): e202213578, 2023 01 09.
Article En | MEDLINE | ID: mdl-36353747

The exploitation of specific guests which can respond to external stimuli is the main approach for the construction of stimuli-responsive supramolecular polymers (SPs) based on host-guest interactions. Most functional guests, however, fail to manifest stimuli-responses. Herein, a hypoxia-responsive dimeric azocalixarene (D-SAC4A) with outstanding hosting properties was used as the macrocyclic building block for the preparation of host stimuli-responsive SPs. Since azocalixarenes can also be compatible with stimuli-responsive guests, an antitumor drug, camptothecin (CPT), was chosen and linked via a disulfide-containing linker to afford a glutathione (GSH)-responsive ditropic guest (D-CPT). A unique dual-responsive SP was obtained by 1 : 1 mixing of D-SAC4A and D-CPT in water, which further assembled into SP nanoparticles (DSPNs). DSPNs displayed outstanding stability against dilution and biological interferants, as well as precise CPT-release under GSH and hypoxia conditions. In vitro and in vivo experiments demonstrated the good biosafety and tumor-suppressive effects of DSPNs.


Antineoplastic Agents , Polymers , Antineoplastic Agents/pharmacology
14.
PDA J Pharm Sci Technol ; 77(1): 27-37, 2023.
Article En | MEDLINE | ID: mdl-35987517

Virus safety of biopharmaceuticals produced in cells of animal origin is governed by regulatory guidelines. It is ensured through raw material controls, cell substrate testing, and evaluation of the purification process for virus clearance capability. An additional control for cell lines that contain endogenous viruses is the virus safety factor (VSF) calculation, to demonstrate that the virus clearance exceeds the amount of potential endogenous virus in a dose of product. Product-specific input data (product titer, process yield, intended dose, purification process virus clearance capability, and the measured titer of endogenous virus produced by the cells) are typically used for the calculation. A wide range of relevant data was obtained from the production of monoclonal antibodies in Chinese Hamster Ovary (CHO) cells, and a sensitivity analysis was performed by using Monte Carlo simulations to determine which input data had the most significant impact on the range and distribution of the VSF. The sensitivity analysis suggested that the VSF calculation can be streamlined to include virus clearance capability, the endogenous virus titer, and dose while excluding product titer and process yield. Furthermore, the simulated VSF exceeded 4 log10 in 96% of the simulations, providing a high level of assurance of virus safety for antibodies produced in CHO cells and purified within specified operational parameters.


Biological Products , Viruses , Cricetinae , Animals , Cricetulus , CHO Cells , Antibodies, Monoclonal
15.
Biologicals ; 80: 6-17, 2022 Oct.
Article En | MEDLINE | ID: mdl-36347754

Preventing adventitious agents from contaminating pharmaceutical products has been an important goal of regulatory agencies and industry for decades. Contamination of these products does not only erode consumer trust but also can have potentially serious health consequences. There are a wide variety of adventitious agents that can contaminate many different classifications of products, with each combination requiring different techniques for prevention or detection of adventitious agent contamination. This review seeks to give a brief overview of adventitious agents that have contaminated released pharmaceutical products, explain the different products that are at risk of contamination, then describe the methods commonly used for the prevention and detection of adventitious agent contamination.


Biological Products , Viruses , Drug Contamination/prevention & control , Pharmaceutical Preparations
16.
J Am Chem Soc ; 144(44): 20351-20362, 2022 11 09.
Article En | MEDLINE | ID: mdl-36264544

Despite the advances in host-guest chemistry, macrocyclic hosts with deep cavities are far from abundant among the large number of wholly synthetic hosts described in the literature. Herein, we describe the design and synthesis of two new tubular hosts, namely, corral[4]arene and corral[5]arene. The former has been isolated and characterized as two conformational diastereoisomers, one is centrosymmetric and the other asymmetric. The latter, a fivefold symmetrical and flexible host, has also been investigated in detail. It is composed of five 4,4'-dimethoxybiphenyl units bridged by ethynylene linkers at their 2,2'-positions and adopts a pentagonal conformation with a tubular-shaped cavity in the presence of guests. This structure endows corral[5]arene not only with a conjugated backbone, capable of bright fluorescent emission (quantum yield, 56%), but also a deep π-electron-rich aromatic cavity with remarkable conformational flexibility. The adaptive cavity of corral[5]arene allows it to accommodate a wide range of neutral and positively charged electron-deficient guests with different molecular sizes and shapes. Binding constants between this host and these guests in three different nonpolar organic solvents lie in the range of 103 to 107 M-1. Moreover, corral[5]arene exhibits dynamic chirality on account of the axes of chirality associated with each of the five biphenyl units and displays first-order transformation as exhibited by circular dichroism in response to the addition of chiral guests. All these stereochemical features render corral[5]arene an attractive host for a variety of supramolecular and nanotechnological applications.


Molecular Conformation , Circular Dichroism , Solvents
17.
Article En | MEDLINE | ID: mdl-36148766

Mobile and stationary phase factors were investigated in order to identify conditions for effective capture of minute virus of mice (MVM), a potential adventitious contaminant in biomanufacturing, using anion exchange membrane chromatography (AEX). The initial study was conducted for Membrane A for a range of feed conditions using bovine serum albumin (BSA) as a model protein mimicking acidic host-cell proteins (HCPs) competitive for virus binding. The effects of pH (6-8), salt concentration (0-150 mM NaCl) and level of BSA (0-10 g/L) were systematically investigated. It was found that higher BSA concentration has the most negative impact on MVM binding followed by the increased conductivity of the feed solution. The effect of pH on MVM binding is also detected but has a less impact compared to other two factors in the range of feed conditions investigated. In addition to Membrane A, three other AEX membranes (Membrane B, C and D) were investigated for MVM binding at a selected feed condition. Based on properties of the membranes investigated, it was found that ligand charge density has the most significant impact on MVM binding performance of AEX membranes from stationary phase perspective.


Minute Virus of Mice , Viruses , Animals , Anions/chemistry , Chromatography, Ion Exchange/methods , Ligands , Mice , Serum Albumin, Bovine , Sodium Chloride
18.
Angew Chem Int Ed Engl ; 61(37): e202208635, 2022 09 12.
Article En | MEDLINE | ID: mdl-35843908

A molecule featuring two distinct cooperatively grown J-aggregates is investigated. Interestingly, when cooling a hot monomer solution, the thermodynamically less stable J1 is exclusively formed even at a particularly slowed temperature dropping rate, which transforms to the more stable J2 at room temperature with very slow kinetics. This observation is ascribed to the differed nucleus sizes of J1 and J2 . During the cooling process, smaller J1 nuclei are formed first at a higher temperature, favored by the entropy effect. At intermediate temperatures, the elongation of J1 out-competes the nucleation of J2 . Then, below the elongation temperature of J2 , the formation of this thermodynamically stable aggregate is hindered kinetically, due to the depletion of monomer by the slow dissociation of J1 . Additional evidence proving the larger nucleus size of J2 is also identified with the varied-temperature spectral analyses and mathematic simulations.


Hot Temperature , Kinetics , Phase Transition , Temperature
19.
Biomed Environ Sci ; 35(5): 412-418, 2022 May 20.
Article En | MEDLINE | ID: mdl-35676812

Taking the Chinese city of Xiamen as an example, simulation and quantitative analysis were performed on the transmissions of the Coronavirus Disease 2019 (COVID-19) and the influence of intervention combinations to assist policymakers in the preparation of targeted response measures. A machine learning model was built to estimate the effectiveness of interventions and simulate transmission in different scenarios. The comparison was conducted between simulated and real cases in Xiamen. A web interface with adjustable parameters, including choice of intervention measures, intervention weights, vaccination, and viral variants, was designed for users to run the simulation. The total case number was set as the outcome. The cumulative number was 4,614,641 without restrictions and 78 under the strictest intervention set. Simulation with the parameters closest to the real situation of the Xiamen outbreak was performed to verify the accuracy and reliability of the model. The simulation model generated a duration of 52 days before the daily cases dropped to zero and the final cumulative case number of 200, which were 25 more days and 36 fewer cases than the real situation, respectively. Targeted interventions could benefit the prevention and control of COVID-19 outbreak while safeguarding public health and mitigating impacts on people's livelihood.


COVID-19 , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Humans , Machine Learning , Pandemics/prevention & control , Policy , Reproducibility of Results , SARS-CoV-2
20.
ACS Nano ; 16(4): 5358-5375, 2022 Apr 26.
Article En | MEDLINE | ID: mdl-35357125

The use of micrometric-sized vehicles could greatly improve selectivity of cytotoxic compounds as their lack of self-diffusion could maximize their retention in tissues. We have used polysilicon microparticles (SiµP) to conjugate bipyridinium-based compounds, able to induce cytotoxicity under regular intracellular conditions. Homogeneous functionalization in suspension was achieved, where the open-chain structure exhibits a more dense packing than cyclic analogues. The microparticles internalized induce high cytotoxicity per particle in cancerous HeLa cells, and the less densely packed functionalization using cyclophanes promotes higher cytotoxicity per bipy than with open-chain analogues. The self-renewing ability of the particles and their proximity to cell membranes may account for increased lipid peroxidation, achieving toxicity at much lower concentrations than that in solution and in less time, inducing highly efficient cytotoxicity in cancerous cells.


HeLa Cells , Humans , Lipid Peroxidation , Cell Membrane
...