Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 288
1.
Comput Biol Med ; 175: 108495, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697003

Allergic rhinitis is a common allergic disease with a complex pathogenesis and many unresolved issues. Studies have shown that the incidence of allergic rhinitis is closely related to genetic factors, and research on the related genes could help further understand its pathogenesis and develop new treatment methods. In this study, 446 allergic rhinitis-related genes were obtained on the basis of the DisGeNET database. The protein-protein interaction network was searched using the random-walk-with-restart algorithm with these 446 genes as seed nodes to assess the linkages between other genes and allergic rhinitis. Then, this result was further examined by three screening tests, including permutation, interaction, and enrichment tests, which aimed to pick up genes that have strong and special associations with allergic rhinitis. 52 novel genes were finally obtained. The functional enrichment test confirmed their relationships to the biological processes and pathways related to allergic rhinitis. Furthermore, some genes were extensively analyzed to uncover their special or latent associations to allergic rhinitis, including IRAK2 and MAPK, which are involved in the pathogenesis of allergic rhinitis and the inhibition of allergic inflammation via the p38-MAPK pathway, respectively. The new found genes may help the following investigations for understanding the underlying molecular mechanisms of allergic rhinitis and developing effective treatments.


Protein Interaction Maps , Rhinitis, Allergic , Humans , Rhinitis, Allergic/genetics , Protein Interaction Maps/genetics , Databases, Genetic , Algorithms , Computational Biology/methods , Gene Regulatory Networks
2.
Proteomics ; : e2300371, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38643379

Forecasting alterations in protein stability caused by variations holds immense importance. Improving the thermal stability of proteins is important for biomedical and industrial applications. This review discusses the latest methods for predicting the effects of mutations on protein stability, databases containing protein mutations and thermodynamic parameters, and experimental techniques for efficiently assessing protein stability in high-throughput settings. Various publicly available databases for protein stability prediction are introduced. Furthermore, state-of-the-art computational approaches for anticipating protein stability changes due to variants are reviewed. Each method's types of features, base algorithm, and prediction results are also detailed. Additionally, some experimental approaches for verifying the prediction results of computational methods are introduced. Finally, the review summarizes the progress and challenges of protein stability prediction and discusses potential models for future research directions.

3.
Protein J ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38436837

Protein-protein interactions (PPIs) involve the physical or functional contact between two or more proteins. Generally, proteins that can interact with each other always have special relationships. Some previous studies have reported that gene ontology (GO) terms are related to the determination of PPIs, suggesting the special patterns on the GO terms of proteins in PPIs. In this study, we explored the special GO term patterns on human PPIs, trying to uncover the underlying functional mechanism of PPIs. The experimental validated human PPIs were retrieved from STRING database, which were termed as positive samples. Additionally, we randomly paired proteins occurring in positive samples, yielding lots of negative samples. A simple calculation was conducted to count the number of positive samples for each GO term pair, where proteins in samples were annotated by GO terms in the pair individually. The similar number for negative samples was also counted and further adjusted due to the great gap between the numbers of positive and negative samples. The difference of the above two numbers and the relative ratio compared with the number on positive samples were calculated. This ratio provided a precise evaluation of the occurrence of GO term pairs for positive samples and negative samples, indicating the latent GO term patterns for PPIs. Our analysis unveiled several nuclear biological processes, including gene transcription, cell proliferation, and nutrient metabolism, as key biological functions. Interactions between major proliferative or metabolic GO terms consistently correspond with significantly reported PPIs in recent literature.

4.
Biochem Genet ; 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383836

Breast cancer remains the most prevalent cancer in women. To date, its underlying molecular mechanisms have not been fully uncovered. The determination of gene factors is important to improve our understanding on breast cancer, which can correlate the specific gene expression and tumor staging. However, the knowledge in this regard is still far from complete. Thus, this study aimed to explore these knowledge gaps by analyzing existing gene expression profile data from 3149 breast cancer samples, where each sample was represented by the expression of 19,644 genes and classified into Nottingham histological grade (NHG) classes (Grade 1, 2, and 3). To this end, a machine learning-based framework was designed. First, the profile data were analyzed by using seven feature ranking algorithms to evaluate the importance of features (genes). Seven feature lists were generated, each of which sorted features in accordance with feature importance evaluated from a special aspect. Then, the incremental feature selection method was applied to each list to determine essential features for classification and building efficient classifiers. Consequently, overlapping genes, such as AURKA, CBX2, and MYBL2, were deemed as potentially related to breast cancer malignancy and prognosis, indicating that such genes were identified to be important by multiple feature ranking algorithms. In addition, the study formulated classification rules to reflect special gene expression patterns for three NHG classes. Some genes and rules were analyzed and supported by recent literature, providing new references for studying breast cancer.

5.
Proteomics ; : e2300302, 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38258387

Small proteins (SPs) are a unique group of proteins that play crucial roles in many important biological processes. Exploring the biological function of SPs is necessary. In this study, the InterPro tool and the maximum correlation method were utilized to analyze functional domains of SPs. The purpose was to identify important functional domains that can indicate the essential differences between small and large protein sequences. First, the small and large proteins were represented by their functional domains via a one-hot scheme. Then, the MaxRel method was adopted to evaluate the relationships between each domain and the target variable, indicating small or large protein. The top 36 domain features were selected for further investigation. Among them, 14 were deemed to be highly related to SPs because they were annotated to SPs more frequently than large proteins. We found the involvement of functional domains, such as ubiquitin-conjugating enzyme/RWD-like, nuclear transport factor 2 domain, and alpha subunit of guanine nucleotide-binding protein (G-protein) in regulating the biological function of SPs. The involvement of these domains has been confirmed by other recent studies. Our findings indicate that protein functional domains may regulate small protein-related functions and predict their biological activity.

6.
Front Biosci (Landmark Ed) ; 29(1): 21, 2024 01 17.
Article En | MEDLINE | ID: mdl-38287832

BACKGROUND: Autophagy is instrumental in various health conditions, including cancer, aging, and infections. Therefore, examining proteins and compounds associated with autophagy is paramount to understanding cellular biology and the origins of diseases, paving the way for potential therapeutic and disease prediction strategies. However, the complexity of autophagy, its intersection with other cellular pathways, and the challenges in monitoring autophagic activity make the experimental identification of these elements arduous. METHODS: In this study, autophagy-related proteins and chemicals were catalogued on the basis of Human Autophagy-dedicated Database. These entities were mapped to their respective PubChem identifications (IDs) for chemicals and Ensembl IDs for proteins, yielding 563 chemicals and 779 proteins. A network comprising protein-protein, protein-chemical, and chemical-chemical interactions was probed employing the Random-Walk-with-Restart algorithm using the aforementioned proteins and chemicals as seed nodes to unearth additional autophagy-associated proteins and chemicals. Screening tests were performed to exclude proteins and chemicals with minimal autophagy associations. RESULTS: A total of 88 inferred proteins and 50 inferred chemicals of high autophagy relevance were identified. Certain entities, such as the chemical prostaglandin E2 (PGE2), which is recognized for modulating cell death-induced inflammatory responses during pathogen invasion, and the protein G Protein Subunit Alpha I1 (GNAI1), implicated in ether lipid metabolism influencing a range of cellular processes including autophagy, were associated with autophagy. CONCLUSIONS: The discovery of novel autophagy-associated proteins and chemicals is of vital importance because it enhances the understanding of autophagy, provides potential therapeutic targets, and fosters the development of innovative therapeutic strategies and interventions.


Neoplasms , Proteins , Humans , Autophagy , Algorithms , Computational Biology/methods
7.
Med Biol Eng Comput ; 62(4): 1031-1048, 2024 Apr.
Article En | MEDLINE | ID: mdl-38123886

Post-acute sequelae of COVID-19 (PASC) is a persistent complication of severe acute respiratory syndrome coronavirus 2 infection that includes symptoms, such as fatigue, cognitive impairment, and respiratory distress. These symptoms severely affect the quality of life of patients after their recovery from COVID-19. In this study, a group of machine learning algorithms analyzed the whole blood RNA-seq data from patients with different PASC levels. The purpose of this analysis was to identify the gene markers associated with PASC and the special expression patterns for different PASC levels. By comparing the quality of life of patients after the acute phase of COVID-19 and before the disease, samples in the dataset were divided into three groups, namely, "Better," "The Same," and "Worse." Each patient was represented by the expression levels of 58,929 genes. The machine learning-based workflow included six feature-ranking algorithms, incremental feature selection (IFS), and four classification algorithms. The feature ranking algorithms were in charge of assessing feature importance, whereas IFS with classification algorithms were used to extract essential genes and to construct efficient classifiers and classification rules. The expression of top genes in the results was associated with the immune response to viral infection, which is supported by the published literature. For example, patients with low CCDC18 expression and high CPED1 expression had good quality of life, whereas those with low CDC16 expression had poor quality of life.


COVID-19 , Cognitive Dysfunction , Humans , Quality of Life , Algorithms , Gene Expression , Disease Progression
8.
Comput Biol Med ; 169: 107883, 2024 Feb.
Article En | MEDLINE | ID: mdl-38157776

COVID-19 is hypothesized to exert enduring effects on the immune systems of patients, leading to alterations in immune-related gene expression. This study aimed to scrutinize the persistent implications of SARS-CoV-2 infection on gene expression and its influence on subsequent immune activation responses. We designed a machine learning-based approach to analyze transcriptomic data from both healthy individuals and patients who had recovered from COVID-19. Patients were categorized based on their influenza vaccination status and then compared with healthy controls. The initial sample set encompassed 86 blood samples from healthy controls and 72 blood samples from recuperated COVID-19 patients prior to influenza vaccination. The second sample set included 123 blood samples from healthy controls and 106 blood samples from recovered COVID-19 patients who had been vaccinated against influenza. For each sample, the dataset captured expression levels of 17,060 genes. Above two sample sets were first analyzed by seven feature ranking algorithms, yielding seven feature lists for each dataset. Then, each list was fed into the incremental feature selection method, incorporating three classic classification algorithms, to extract essential genes, classification rules and build efficient classifiers. The genes and rules were analyzed in this study. The main findings included that NEXN and ZNF354A were highly expressed in recovered COVID-19 patients, whereas MKI67 and GZMB were highly expressed in patients with secondary immune activation post-COVID-19 recovery. These pivotal genes could provide valuable insights for future health monitoring of COVID-19 patients and guide the creation of continued treatment regimens.


COVID-19 , Influenza, Human , Humans , SARS-CoV-2 , Vaccination , Machine Learning
9.
Front Biosci (Landmark Ed) ; 28(11): 284, 2023 11 08.
Article En | MEDLINE | ID: mdl-38062828

BACKGROUND: Different severities of coronavirus disease 2019 (COVID-19) cause different levels of respiratory symptoms and systemic inflammation. DNA methylation, a heritable epigenetic process, also shows differential changes in different severities of COVID-19. DNA methylation is involved in regulating the activity of various immune cells and influences immune pathways associated with viral infections. It may also be involved in regulating the expression of genes associated with the progression of COVID-19. METHODS: In this study, a sophisticated machine-learning workflow was designed to analyze whole-blood DNA methylation data from COVID-19 patients with different severities versus healthy controls. We aimed to understand the role of DNA methylation in the development of COVID-19. The sample set contained 101 negative controls, 360 mildly infected individuals, and 113 severely infected individuals. Each sample involved 768,067 methylation sites. Three feature-ranking algorithms (least absolute shrinkage and selection operator (LASSO), light gradient-boosting machine (LightGBM), and Monte Carlo feature selection (MCFS)) were used to rank and filter out sites highly correlated with COVID-19. Based on the obtained ranking results, a high-performance classification model was constructed by combining the feature incremental approach with four classification algorithms (decision tree (DT), k-nearest neighbor (kNN), random forest (RF), and support vector machine (SVM)). RESULTS: Some essential methylation sites and decision rules were obtained. CONCLUSIONS: The genes (IGSF6, CD38, and TLR2) of some essential methylation sites were confirmed to play important roles in the immune system.


COVID-19 , DNA Methylation , Humans , COVID-19/diagnosis , COVID-19/genetics , Algorithms , Epigenesis, Genetic , Inflammation
10.
Article En | MEDLINE | ID: mdl-37957897

BACKGROUND: Colorectal cancer (CRC) has a very high incidence and lethality rate and is one of the most dangerous cancer types. Timely diagnosis can effectively reduce the incidence of colorectal cancer. Changes in para-cancerous tissues may serve as an early signal for tumorigenesis. Comparison of the differences in gene expression between para-cancerous and normal mucosa can help in the diagnosis of CRC and understanding the mechanisms of development. OBJECTIVES: This study aimed to identify specific genes at the level of gene expression, which are expressed in normal mucosa and may be predictive of CRC risk. METHODS: A machine learning approach was used to analyze transcriptomic data in 459 samples of normal colonic mucosal tissue from 322 CRC cases and 137 non-CRC, in which each sample contained 28,706 gene expression levels. The genes were ranked using four ranking methods based on importance estimation (LASSO, LightGBM, MCFS, mRMR, and RF) and four classification algorithms (decision tree [DT], K-nearest neighbor [KNN], random forest [RF], and support vector machine [SVM]) were combined with incremental feature selection [IFS] methods to construct a prediction model with excellent performance. RESULT: The top-ranked genes, namely, HOXD12, CDH1, and S100A12, were associated with tumorigenesis based on previous studies. CONCLUSION: This study summarized four sets of quantitative classification rules based on the DT algorithm, providing clues for understanding the microenvironmental changes caused by CRC. According to the rules, the effect of CRC on normal mucosa can be determined.

11.
Biochim Biophys Acta Gen Subj ; 1867(12): 130484, 2023 12.
Article En | MEDLINE | ID: mdl-37805078

BACKGROUND: Targeted therapy has revolutionized cancer treatment, greatly improving patient outcomes and quality of life. Lung cancer, specifically non-small cell lung cancer, is frequently driven by the G12C mutation at the KRAS locus. The development of KRAS inhibitors has been a breakthrough in the field of cancer research, given the crucial role of KRAS mutations in driving tumor growth and progression. However, over half of patients with cancer bypass inhibition show limited response to treatment. The mechanisms underlying tumor cell resistance to this treatment remain poorly understood. METHODS: To address above gap in knowledge, we conducted a study aimed to elucidate the differences between tumor cells that respond positively to KRAS (G12C) inhibitor therapy and those that do not. Specifically, we analyzed single-cell gene expression profiles from KRAS G12C-mutant tumor cell models (H358, H2122, and SW1573) treated with KRAS G12C (ARS-1620) inhibitor, which contained 4297 cells that continued to proliferate under treatment and 3315 cells that became quiescent. Each cell was represented by the expression levels on 8687 genes. We then designed an innovative machine learning based framework, incorporating seven feature ranking algorithms and four classification algorithms to identify essential genes and establish quantitative rules. RESULTS: Our analysis identified some top-ranked genes, including H2AFZ, CKS1B, TUBA1B, RRM2, and BIRC5, that are known to be associated with the progression of multiple cancers. CONCLUSION: Above genes were relevant to tumor cell resistance to targeted therapy. This study provides important insights into the molecular mechanisms underlying tumor cell resistance to KRAS inhibitor treatment.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Quality of Life , Cell Line, Tumor
12.
Biology (Basel) ; 12(7)2023 Jul 02.
Article En | MEDLINE | ID: mdl-37508378

As COVID-19 develops, dynamic changes occur in the patient's immune system. Changes in molecular levels in different immune cells can reflect the course of COVID-19. This study aims to uncover the molecular characteristics of different immune cell subpopulations at different stages of COVID-19. We designed a machine learning workflow to analyze scRNA-seq data of three immune cell types (B, T, and myeloid cells) in four levels of COVID-19 severity/outcome. The datasets for three cell types included 403,700 B-cell, 634,595 T-cell, and 346,547 myeloid cell samples. Each cell subtype was divided into four groups, control, convalescence, progression mild/moderate, and progression severe/critical, and each immune cell contained 27,943 gene features. A feature analysis procedure was applied to the data of each cell type. Irrelevant features were first excluded according to their relevance to the target variable measured by mutual information. Then, four ranking algorithms (last absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, and max-relevance and min-redundancy) were adopted to analyze the remaining features, resulting in four feature lists. These lists were fed into the incremental feature selection, incorporating three classification algorithms (decision tree, k-nearest neighbor, and random forest) to extract key gene features and construct classifiers with superior performance. The results confirmed that genes such as PFN1, RPS26, and FTH1 played important roles in SARS-CoV-2 infection. These findings provide a useful reference for the understanding of the ongoing effect of COVID-19 development on the immune system.

13.
Life (Basel) ; 13(6)2023 May 31.
Article En | MEDLINE | ID: mdl-37374086

Vaccines trigger an immunological response that includes B and T cells, with B cells producing antibodies. SARS-CoV-2 immunity weakens over time after vaccination. Discovering key changes in antigen-reactive antibodies over time after vaccination could help improve vaccine efficiency. In this study, we collected data on blood antibody levels in a cohort of healthcare workers vaccinated for COVID-19 and obtained 73 antigens in samples from four groups according to the duration after vaccination, including 104 unvaccinated healthcare workers, 534 healthcare workers within 60 days after vaccination, 594 healthcare workers between 60 and 180 days after vaccination, and 141 healthcare workers over 180 days after vaccination. Our work was a reanalysis of the data originally collected at Irvine University. This data was obtained in Orange County, California, USA, with the collection process commencing in December 2020. British variant (B.1.1.7), South African variant (B.1.351), and Brazilian/Japanese variant (P.1) were the most prevalent strains during the sampling period. An efficient machine learning based framework containing four feature selection methods (least absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, and maximum relevance minimum redundancy) and four classification algorithms (decision tree, k-nearest neighbor, random forest, and support vector machine) was designed to select essential antibodies against specific antigens. Several efficient classifiers with a weighted F1 value around 0.75 were constructed. The antigen microarray used for identifying antibody levels in the coronavirus features ten distinct SARS-CoV-2 antigens, comprising various segments of both nucleocapsid protein (NP) and spike protein (S). This study revealed that S1 + S2, S1.mFcTag, S1.HisTag, S1, S2, Spike.RBD.His.Bac, Spike.RBD.rFc, and S1.RBD.mFc were most highly ranked among all features, where S1 and S2 are the subunits of Spike, and the suffixes represent the tagging information of different recombinant proteins. Meanwhile, the classification rules were obtained from the optimal decision tree to explain quantitatively the roles of antigens in the classification. This study identified antibodies associated with decreased clinical immunity based on populations with different time spans after vaccination. These antibodies have important implications for maintaining long-term immunity to SARS-CoV-2.

14.
Front Microbiol ; 14: 1138674, 2023.
Article En | MEDLINE | ID: mdl-37007526

To date, COVID-19 remains a serious global public health problem. Vaccination against SARS-CoV-2 has been adopted by many countries as an effective coping strategy. The strength of the body's immune response in the face of viral infection correlates with the number of vaccinations and the duration of vaccination. In this study, we aimed to identify specific genes that may trigger and control the immune response to COVID-19 under different vaccination scenarios. A machine learning-based approach was designed to analyze the blood transcriptomes of 161 individuals who were classified into six groups according to the dose and timing of inoculations, including I-D0, I-D2-4, I-D7 (day 0, days 2-4, and day 7 after the first dose of ChAdOx1, respectively) and II-D0, II-D1-4, II-D7-10 (day 0, days 1-4, and days 7-10 after the second dose of BNT162b2, respectively). Each sample was represented by the expression levels of 26,364 genes. The first dose was ChAdOx1, whereas the second dose was mainly BNT162b2 (Only four individuals received a second dose of ChAdOx1). The groups were deemed as labels and genes were considered as features. Several machine learning algorithms were employed to analyze such classification problem. In detail, five feature ranking algorithms (Lasso, LightGBM, MCFS, mRMR, and PFI) were first applied to evaluate the importance of each gene feature, resulting in five feature lists. Then, the lists were put into incremental feature selection method with four classification algorithms to extract essential genes, classification rules and build optimal classifiers. The essential genes, namely, NRF2, RPRD1B, NEU3, SMC5, and TPX2, have been previously associated with immune response. This study also summarized expression rules that describe different vaccination scenarios to help determine the molecular mechanism of vaccine-induced antiviral immunity.

15.
Front Genet ; 14: 1157305, 2023.
Article En | MEDLINE | ID: mdl-37007947

Multiple types of COVID-19 vaccines have been shown to be highly effective in preventing SARS-CoV-2 infection and in reducing post-infection symptoms. Almost all of these vaccines induce systemic immune responses, but differences in immune responses induced by different vaccination regimens are evident. This study aimed to reveal the differences in immune gene expression levels of different target cells under different vaccine strategies after SARS-CoV-2 infection in hamsters. A machine learning based process was designed to analyze single-cell transcriptomic data of different cell types from the blood, lung, and nasal mucosa of hamsters infected with SARS-CoV-2, including B and T cells from the blood and nasal cavity, macrophages from the lung and nasal cavity, alveolar epithelial and lung endothelial cells. The cohort was divided into five groups: non-vaccinated (control), 2*adenovirus (two doses of adenovirus vaccine), 2*attenuated (two doses of attenuated virus vaccine), 2*mRNA (two doses of mRNA vaccine), and mRNA/attenuated (primed by mRNA vaccine, boosted by attenuated vaccine). All genes were ranked using five signature ranking methods (LASSO, LightGBM, Monte Carlo feature selection, mRMR, and permutation feature importance). Some key genes that contributed to the analysis of immune changes, such as RPS23, DDX5, PFN1 in immune cells, and IRF9 and MX1 in tissue cells, were screened. Afterward, the five feature sorting lists were fed into the feature incremental selection framework, which contained two classification algorithms (decision tree [DT] and random forest [RF]), to construct optimal classifiers and generate quantitative rules. Results showed that random forest classifiers could provide relative higher performance than decision tree classifiers, whereas the DT classifiers provided quantitative rules that indicated special gene expression levels under different vaccine strategies. These findings may help us to develop better protective vaccination programs and new vaccines.

16.
Front Genet ; 14: 1145647, 2023.
Article En | MEDLINE | ID: mdl-36936430

Chromatin accessibility is a generic property of the eukaryotic genome, which refers to the degree of physical compaction of chromatin. Recent studies have shown that chromatin accessibility is cell type dependent, indicating chromatin heterogeneity across cell lines and tissues. The identification of markers used to distinguish cell types at the chromosome level is important to understand cell function and classify cell types. In the present study, we investigated transcriptionally active chromosome segments identified by sci-ATAC-seq at single-cell resolution, including 69,015 cells belonging to 77 different cell types. Each cell was represented by existence status on 20,783 genes that were obtained from 436,206 active chromosome segments. The gene features were deeply analyzed by Boruta, resulting in 3897 genes, which were ranked in a list by Monte Carlo feature selection. Such list was further analyzed by incremental feature selection (IFS) method, yielding essential genes, classification rules and an efficient random forest (RF) classifier. To improve the performance of the optimal RF classifier, its features were further processed by autoencoder, light gradient boosting machine and IFS method. The final RF classifier with MCC of 0.838 was constructed. Some marker genes such as H2-Dmb2, which are specifically expressed in antigen-presenting cells (e.g., dendritic cells or macrophages), and Tenm2, which are specifically expressed in T cells, were identified in this study. Our analysis revealed numerous potential epigenetic modification patterns that are unique to particular cell types, thereby advancing knowledge of the critical functions of chromatin accessibility in cell processes.

17.
Front Immunol ; 14: 1131051, 2023.
Article En | MEDLINE | ID: mdl-36936955

The widely used ChAdOx1 nCoV-19 (ChAd) vector and BNT162b2 (BNT) mRNA vaccines have been shown to induce robust immune responses. Recent studies demonstrated that the immune responses of people who received one dose of ChAdOx1 and one dose of BNT were better than those of people who received vaccines with two homologous ChAdOx1 or two BNT doses. However, how heterologous vaccines function has not been extensively investigated. In this study, single-cell RNA sequencing data from three classes of samples: volunteers vaccinated with heterologous ChAdOx1-BNT and volunteers vaccinated with homologous ChAd-ChAd and BNT-BNT vaccinations after 7 days were divided into three types of immune cells (3654 B, 8212 CD4+ T, and 5608 CD8+ T cells). To identify differences in gene expression in various cell types induced by vaccines administered through different vaccination strategies, multiple advanced feature selection methods (max-relevance and min-redundancy, Monte Carlo feature selection, least absolute shrinkage and selection operator, light gradient boosting machine, and permutation feature importance) and classification algorithms (decision tree and random forest) were integrated into a computational framework. Feature selection methods were in charge of analyzing the importance of gene features, yielding multiple gene lists. These lists were fed into incremental feature selection, incorporating decision tree and random forest, to extract essential genes, classification rules and build efficient classifiers. Highly ranked genes include PLCG2, whose differential expression is important to the B cell immune pathway and is positively correlated with immune cells, such as CD8+ T cells, and B2M, which is associated with thymic T cell differentiation. This study gave an important contribution to the mechanistic explanation of results showing the stronger immune response of a heterologous ChAdOx1-BNT vaccination schedule than two doses of either BNT or ChAdOx1, offering a theoretical foundation for vaccine modification.


BNT162 Vaccine , ChAdOx1 nCoV-19 , Humans , BNT162 Vaccine/immunology , CD8-Positive T-Lymphocytes , ChAdOx1 nCoV-19/immunology , Machine Learning , COVID-19/prevention & control , CD4-Positive T-Lymphocytes
18.
Life (Basel) ; 13(3)2023 Mar 15.
Article En | MEDLINE | ID: mdl-36983953

The coronavirus disease 2019 (COVID-19), as a severe respiratory disease, affects many parts of the body, and approximately 20-85% of patients exhibit functional impairment of the senses of smell and taste, some of whom even experience the permanent loss of these senses. These symptoms are not life-threatening but severely affect patients' quality of life and increase the risk of depression and anxiety. The pathological mechanisms of these symptoms have not been fully identified. In the current study, we aimed to identify the important biomarkers at the expression level associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-mediated loss of taste or olfactory ability, and we have suggested the potential pathogenetic mechanisms of COVID-19 complications. We designed a machine-learning-based approach to analyze the transcriptome of 577 COVID-19 patient samples, including 84 COVID-19 samples with a decreased ability to taste or smell and 493 COVID-19 samples without impairment. Each sample was represented by 58,929 gene expression levels. The features were analyzed and sorted by three feature selection methods (least absolute shrinkage and selection operator, light gradient boosting machine, and Monte Carlo feature selection). The optimal feature sets were obtained through incremental feature selection using two classification algorithms: decision tree (DT) and random forest (RF). The top genes identified by these multiple methods (H3-5, NUDT5, and AOC1) are involved in olfactory and gustatory impairments. Meanwhile, a high-performance RF classifier was developed in this study, and three sets of quantitative rules that describe the impairment of olfactory and gustatory functions were obtained based on the optimal DT classifiers. In summary, this study provides a new computation analysis and suggests the latent biomarkers (genes and rules) for predicting olfactory and gustatory impairment caused by COVID-19 complications.

19.
Biomed Res Int ; 2023: 5333361, 2023.
Article En | MEDLINE | ID: mdl-36644165

Long-term cigarette smoking causes various human diseases, including respiratory disease, cancer, and gastrointestinal (GI) disorders. Alterations in gene expression and variable splicing processes induced by smoking are associated with the development of diseases. This study applied advanced machine learning methods to identify the isoforms with important roles in distinguishing smokers from former smokers based on the expression profile of isoforms from current and former smokers collected in one previous study. These isoforms were deemed as features, which were first analyzed by the Boruta to select features highly correlated with the target variables. Then, the selected features were evaluated by four feature ranking algorithms, resulting in four feature lists. The incremental feature selection method was applied to each list for obtaining the optimal feature subsets and building high-performance classification models. Furthermore, a series of classification rules were accessed by decision tree with the highest performance. Eventually, the rationality of the mined isoforms (features) and classification rules was verified by reviewing previous research. Features such as isoforms ENST00000464835 (expressed by LRRN3), ENST00000622663 (expressed by SASH1), and ENST00000284311 (expressed by GPR15), and pathways (cytotoxicity mediated by natural killer cell and cytokine-cytokine receptor interaction) revealed by the enrichment analysis, were highly relevant to smoking response, suggesting the robustness of our analysis pipeline.


Smoking , Transcriptome , Humans , Algorithms , Machine Learning , Receptors, G-Protein-Coupled/genetics , Receptors, Peptide/genetics , Smoking/adverse effects , Smoking/genetics , Transcriptome/genetics
20.
Biochim Biophys Acta Proteins Proteom ; 1871(3): 140889, 2023 05 01.
Article En | MEDLINE | ID: mdl-36610583

Metabolic stability of proteins plays a vital role in various dedicated cellular processes. Traditional methods of measuring the metabolic stability are time-consuming and expensive. Therefore, we developed a more efficient computational approach to understand the protein dynamic action mechanisms in biological process networks. In this study, we collected 341 short-lived proteins and 824 non-short-lived proteins from U2OS; 342 short-lived proteins and 821 non-short-lived proteins from HEK293T; 424 short-lived proteins and 1153 non-short-lived proteins from HCT116; and 384 short-lived proteins and 992 non-short-lived proteins from RPE1. The proteins were encoded by GO and KEGG enrichment scores based on the genes and their neighbors in STRING, resulting in 20,681 GO term features and 297 KEGG pathway features. We also incorporated the protein interaction information from STRING into the features and obtained 19,247 node features. Boruta and mRMR methods were used for feature filtering, and IFS method was used to obtain the best feature subsets and create the models with the highest performance. The present study identified 42 features that did not appear in previous studies and classified them into eight groups according to their functional annotation. By reviewing the literature, we found that the following three functional groups were critical in determining the stability of proteins: synaptic transmission, post-translational modifications, and cell fate determination. These findings may serve as a valuable reference for developing drugs that target protein stability.


Proteins , Humans , Gene Ontology , HEK293 Cells , Proteins/genetics , Proteins/metabolism , Protein Stability
...