Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
J Integr Plant Biol ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38695656

Flowering time and growth period are key agronomic traits which directly affect soybean (Glycine max (L.) Merr.) adaptation to diverse latitudes and farming systems. The FLOWERING LOCUS T (FT) homologs GmFT2a and GmFT5a integrate multiple flowering regulation pathways and significantly advance flowering and maturity in soybean. Pinpointing the genes responsible for regulating GmFT2a and GmFT5a will improve our understanding of the molecular mechanisms governing growth period in soybean. In this study, we identified the Nuclear Factor Y-C (NFY-C) protein GmNF-YC4 as a novel flowering suppressor in soybean under long-day (LD) conditions. GmNF-YC4 delays flowering and maturation by directly repressing the expression of GmFT2a and GmFT5a. In addition, we found that a strong selective sweep event occurred in the chromosomal region harboring the GmNF-YC4 gene during soybean domestication. The GmNF-YC4Hap3 allele was mainly found in wild soybean (Glycine soja Siebold & Zucc.) and has been eliminated from G. max landraces and improved cultivars, which predominantly contain the GmNF-YC4Hap1 allele. Furthermore, the Gmnf-yc4 mutants displayed notably accelerated flowering and maturation under LD conditions. These alleles may prove to be valuable genetic resources for enhancing soybean adaptability to higher latitudes.

2.
Plant Cell Environ ; 47(1): 246-258, 2024 Jan.
Article En | MEDLINE | ID: mdl-37830787

Plants can sense the photoperiod to flower at the right time. As a sensitive short-day crop, soybean (Glycine max) flowering varies greatly depending on photoperiods, affecting yields. Adaptive changes in soybeans rely on variable genetic loci such as E1 and FLOWERING LOCUS T orthologs. However, the precise coordination and control of these molecular components remain largely unknown. In this study, we demonstrate that GmFT5b functions as a crucial factor for soybean flowering. Overexpressed or mutated GmFT5b resulted in significantly early or later flowering, altering expression profiles for several downstream flowering-related genes under a long-day photoperiod. GmFT5b interacts with the transcription factor GmFDL15, suggesting transcriptional tuning of flowering time regulatory genes via the GmFT5b/GmFDL15 complex. Notably, GmFT5a partially compensated for GmFT5b function, as ft5a ft5b double mutants exhibited an enhanced late-flowering phenotype. Association mapping revealed that GmFT5b was associated with flowering time, maturity, and geographical distribution of soybean accessions, all associated with the E1 locus. Therefore, GmFT5b is a valuable target for enhancing regional adaptability. Natural variants or multiple mutants in this region can be utilized to generate optimized soybean varieties with precise flowering times.


Glycine max , Photoperiod , Glycine max/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Genetic Loci , Flowers/physiology , Gene Expression Regulation, Plant
3.
Sleep Breath ; 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37843682

PURPOSE: To evaluate the efficacy and safety of modified coblation endoscopic lingual lightening to address retrolingual obstruction in multilevel surgery for obstructive sleep apneae (OSA). METHODS: Patients with OSA due to retropalatal and retrolingual obstructions were enrolled. Group 1 consisted of patients who underwent modified coblation endoscopic lingual lightening combined with H-uvulopalatopharyngoplasty, while group 2 comprised patients treated by H-uvulopalatopharyngoplasty alone. Objective parameters and subjective evaluations were recorded preoperatively and at 6 months postoperatively. RESULTS: The mean (standard deviation) apnea-hypopnea index (AHI) declined from 51.5 (18.9) to 14.3 (7.2) in group 1, and from 51.7 (15.8) to 28.5 (16.9) in group 2. The mean (standard deviation) percentage change in AHI was higher in group 1 than in group 2 (73.2 [10.9] vs. 48.9 [22.4], P < 0.01). The surgical response rate differed significantly between groups 1 and 2 (88.5 [23/26] vs. 46.7 [14/30], P < 0.01). Other outcomes, including the lowest oxygen saturation, Epworth Sleepiness Scale score, snoring visual analog scale score, and subjective improvement rate, were also significantly better in group 1 than in group 2. CONCLUSION: Without increasing complications, modified coblation endoscopic lingual lightening significantly improved surgical outcomes as part of multilevel surgery in patients with OSA due to multilevel obstruction.

4.
Mol Breed ; 43(8): 60, 2023 Aug.
Article En | MEDLINE | ID: mdl-37496825

Soybean (Glycine max (L.) Merr.) is a typical short-day and temperate crop that is sensitive to photoperiod and temperature. Responses of soybean to photothermal conditions determine plant growth and development, which affect its architecture, yield formation, and capacity for geographic adaptation. Flowering time, maturity, and other traits associated with photothermal adaptability are controlled by multiple major-effect and minor-effect genes and genotype-by-environment interactions. Genetic studies have identified at least 11 loci (E1-E4, E6-E11, and J) that participate in photoperiodic regulation of flowering time and maturity in soybean. Molecular cloning and characterization of major-effect flowering genes have clarified the photoperiod-dependent flowering pathway, in which the photoreceptor gene phytochrome A, circadian evening complex (EC) components, central flowering repressor E1, and FLOWERING LOCUS T family genes play key roles in regulation of flowering time, maturity, and adaptability to photothermal conditions. Here, we provide an overview of recent progress in genetic and molecular analysis of traits associated with photothermal adaptability, summarizing advances in molecular breeding practices and tools for improving these traits. Furthermore, we discuss methods for breeding soybean varieties with better adaptability to specific ecological regions, with emphasis on a novel strategy, the Potalaization model, which allows breeding of widely adapted soybean varieties through the use of multiple molecular tools in existing elite widely adapted varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01406-z.

5.
Plant Cell ; 35(9): 3485-3503, 2023 09 01.
Article En | MEDLINE | ID: mdl-37335905

Ambient light and the endogenous circadian clock play key roles in regulating Arabidopsis (Arabidopsis thaliana) seedling photomorphogenesis. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) acts downstream of both light and the circadian clock to promote hypocotyl elongation. Several members of the R2R3-MYB transcription factor (TF) family, the most common type of MYB TF family in Arabidopsis, have been shown to be involved in regulating photomorphogenesis. Nonetheless, whether R2R3-MYB TFs are involved in connecting the light and clock signaling pathways during seedling photomorphogenesis remains unknown. Here, we report that MYB112, a member of the R2R3-MYB family, acts as a negative regulator of seedling photomorphogenesis in Arabidopsis. The light signal promotes the transcription and protein accumulation of MYB112. myb112 mutants exhibit short hypocotyls in both constant light and diurnal cycles. MYB112 physically interacts with PIF4 to enhance the transcription of PIF4 target genes involved in the auxin pathway, including YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19), and IAA29. Furthermore, MYB112 directly binds to the promoter of LUX ARRHYTHMO (LUX), the central component of clock oscillators, to repress its expression mainly in the afternoon and relieve LUX-inhibited expression of PIF4. Genetic evidence confirms that LUX acts downstream of MYB112 in regulating hypocotyl elongation. Thus, the enhanced transcript accumulation and transcriptional activation activity of PIF4 by MYB112 additively promotes the expression of auxin-related genes, thereby increasing auxin synthesis and signaling and fine-tuning hypocotyl growth under diurnal cycles.


Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Phytochrome , Arabidopsis/metabolism , Circadian Clocks/genetics , Hypocotyl , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Seedlings/genetics , Phytochrome/genetics , Phytochrome/metabolism , Indoleacetic Acids/metabolism , Gene Expression Regulation, Plant , Light
6.
Int J Biol Macromol ; 245: 125464, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37348581

The flowering time of soybean is a highly important agronomic characteristic, which affects the adaptability and yield. AtMRF1, a MORN-repeat motif gene, acts as a floral promoter in Arabidopsis, its functions in soybean are not yet understood. Here, we employed qRT-PCR to analyze the tissue expression patten of MRF1 homologs in soybean and determined that the GmMRF2 gene, containing a MORN-motif, highly expressed in the shoot and responded to photoperiod. GmMRF2 overexpression soybean lines exhibited earlier flowering time under long-day (LD) conditions, and increased plant height under both LD and short-day (SD) conditions compared to wild-type (WT) plants. The expression levels of gibberellic acid (GA) pathway genes that positively regulate plant height genes and flowering-promoting genes were up-regulated in the GmMRF2 overexpression lines, were up-regulated in the GmMRF2 overexpression lines. Further study revealed that GmMRF2 interacted with GmTCP15 to co-induce the expression of GmSOC1b. Together, our results preliminarily reveal the functions and mechanisms of GmMRF2 in regulating flowering time and plant height, provide a new promising gene for soybean crop improvement.


Arabidopsis , Glycine max , Glycine max/genetics , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Plants, Genetically Modified/genetics , Photoperiod , Arabidopsis/genetics , Gene Expression Regulation, Plant
7.
Sci Adv ; 9(2): eade1150, 2023 01 13.
Article En | MEDLINE | ID: mdl-36638166

Symbiotic nitrogen fixation boosts legume growth and production in nitrogen-poor soils. It has long been assumed that fixed nitrogen increases reproductive success, but until now, the regulatory mechanism was unknown. Here, we report a symbiotic flowering pathway that couples symbiotic and nutrient signals to the flowering induction pathway in legumes. We show that the symbiotic microRNA-microRNA172c (miR172c) and fixed nitrogen systemically and synergistically convey symbiotic and nutritional cues from roots to leaves to promote soybean (Glycine max) flowering. The combinations of symbiotic miR172c and local miR172c elicited by fixed nitrogen and development in leaves activate florigen-encoding FLOWERING LOCUS T (FT) homologs (GmFT2a/5a) by repressing TARGET OF EAT1-like 4a (GmTOE4a). Thus, FTs trigger reproductive development, which allows legumes to survive and reproduce under low-nitrogen conditions.


Glycine max , Nitrogen Fixation , Nitrogen/metabolism , Nitrogen Fixation/physiology , Glycine max/genetics , Symbiosis/physiology , MicroRNAs , RNA, Plant , Genes, Plant
8.
New Phytol ; 237(5): 1876-1890, 2023 03.
Article En | MEDLINE | ID: mdl-36404128

Soybean staygreen syndrome, characterized by delayed leaf and stem senescence, abnormal pods, and aborted seeds, has recently become a serious and prominent problem in soybean production. Although the pest Riptortus pedestris has received increasing attention as the possible cause of staygreen syndrome, the mechanism remains unknown. Here, we clarify that direct feeding by R. pedestris, not transmission of a pathogen by this pest, is the primary cause of typical soybean staygreen syndrome and that critical feeding damage occurs at the early pod stage. Transcriptome profiling of soybean indicated that many signal transduction pathways, including photoperiod, hormone, defense response, and photosynthesis, respond to R. pedestris infestation. Importantly, we discovered that members of the FLOWERING LOCUS T (FT) gene family were suppressed by R. pedestris infestation, and overexpression of floral inducer GmFT2a attenuates staygreen symptoms by mediating soybean defense response and photosynthesis. Together, our findings systematically illustrate the association between pest infestation and soybean staygreen syndrome and provide the basis for establishing a targeted soybean pest prevention and control system.


Glycine max , Heteroptera , Plant Diseases , Plant Leaves , Animals , Heteroptera/pathogenicity , Heteroptera/physiology , Photoperiod , Plant Leaves/genetics , Reproduction , Glycine max/genetics , Plant Diseases/etiology , Plant Diseases/genetics , Feeding Behavior
9.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article En | MEDLINE | ID: mdl-36361580

The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a revolutionary genome editing technology that has been used to achieve site-specific gene knock-out, large fragment deletion, or base editing in many plant species including soybean (Glycinemax). The Streptococcuspyogenes Cas9 (SpCas9) is widely used in plants at present, although there are some reports describing the application of CRISPR/Cpf1 in soybean. Therefore, the selection range of PAM (protospacer adjacent motif) sequences for soybean is currently limited to 5'-NGG-3' (SpCas9) or 5'-TTTN-3' (Cpf1), which in turn limits the number of genes that can be mutated. Another Cas9 enzyme from Staphylococcus aureus (SaCas9) recognizes the PAM sequence 5'-NNGRRT-3' (where R represents A or G), which can provide a wider range of potential target sequences. In this study, we developed a CRISPR/SaCas9 system and used this tool to specifically induce targeted mutations at five target sites in the GmFT2a (Glyma.16G150700) and GmFT5a (Glyma.16G044100) genes in soybean hairy roots. We demonstrated that this tool can recognize the PAM sequences 5'-AAGGGT-3', 5'-GGGGAT-3', 5'-TTGAAT-3', and 5'-TAGGGT-3' in soybean, and it achieved mutation rates ranging from 34.5% to 73.3%. Our results show that we have established a highly efficient CRISPR/SaCas9 tool that is as suitable as SpCas9 for genome editing in soybean, and it will be useful for expanding the range of target sequences for genome editing.


CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems/genetics , Staphylococcus aureus/metabolism , Glycine max/genetics , Glycine max/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism
10.
Front Plant Sci ; 13: 929747, 2022.
Article En | MEDLINE | ID: mdl-35958200

Onset of flowering of plants is precisely controlled by extensive environmental factors and internal molecular networks, in which FLOWERING LOCUS T (FT) is a key flowering integrator. In soybean, a typical short-day plant, 11 FT homologues are found in its genome, of which several homologues are functionally diversified in flowering pathways and the others including GmFT3a are yet unknown. In the current study, we characterized GmFT3a, which is located on the same chromosome as the flowering promoters GmFT2a and GmFT5a. Overexpression of GmFT3a significantly promoted flowering of Arabidopsis under the inductive long-day (LD) photoperiod. GmFT3a over-expressed soybean also flowered earlier than the control under LD, but they were not significantly different under inductive short-day (SD) conditions, indicating that GmFT3a acts as a flowering promoter in the non-inductive photoperiod in soybean. Compared with other GmFT homologues, GmFT3a exhibited a slighter effect in flowering promotion than GmFT2a, GmFT5a and GmFT2b under LD conditions. GmFT3a promoted flowering by regulating the expression of downstream flowering-related genes and also affected the expression of other GmFTs. According to the re-sequencing data, the regional distributions of two major haplotypes in 176 soybean varieties were analyzed. The varieties with GmFT3a-Hap2 haplotype matured relatively early, and relative higher expression of GmFT3a was detected in early maturing varieties, implying that Hap2 variation may contribute to the adaptation of soybean to higher latitude regions by increasing expression level of genes in metabolism and signaling pathways. The early flowering germplasm generated by overexpression of GmFT3a has potential to be planted at higher latitudes where non-inductive long day is dominant in the growing season, and GmFT3a can be used to fine-tune soybean flowering and maturity time and improve the geographical adaptation.

11.
Int J Mol Sci ; 23(5)2022 Feb 24.
Article En | MEDLINE | ID: mdl-35269637

Photoperiodic flowering is an important agronomic trait that determines adaptability and yield in soybean and is strongly influenced by FLOWERING LOCUS T (FT) genes. Due to the presence of multiple FT homologs in the genome, their functions in soybean are not fully understood. Here, we show that GmFT3b exhibits functional redundancy in regulating soybean photoperiodic flowering. Bioinformatic analysis revealed that GmFT3b is a typical floral inducer FT homolog and that the protein is localized to the nucleus. Moreover, GmFT3b expression was induced by photoperiod and circadian rhythm and was more responsive to long-day (LD) conditions. We generated a homozygous ft3b knockout and three GmFT3b-overexpressing soybean lines for evaluation under different photoperiods. There were no significant differences in flowering time between the wild-type, the GmFT3b overexpressors, and the ft3b knockouts under natural long-day, short-day, or LD conditions. Although the downstream flowering-related genes GmFUL1 (a, b), GmAP1d, and GmLFY1 were slightly down-regulated in ft3b plants, the floral inducers GmFT5a and GmFT5b were highly expressed, indicating potential compensation for the loss of GmFT3b. We suggest that GmFT3b acts redundantly in flowering time regulation and may be compensated by other FT homologs in soybean.


Flowers , Glycine max , Flowers/metabolism , Gene Expression Regulation, Plant , Phenotype , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine max/metabolism
12.
Plant Cell Environ ; 44(8): 2551-2564, 2021 08.
Article En | MEDLINE | ID: mdl-34050544

Soybean (Glycine max), a typical short-day plant (SDP) domesticated in temperate regions, has expanded to high latitudes where daylengths are long from soybean emergence to bloom, but rapidly decrease from seed filling to maturity. Cotyledons are well known as the major storage organs in seeds, but it is unclear whether developing cotyledons store flowering substances at filling stage in SD for upcoming seedlings, or instead respond to photoperiod for floral induction after emergence of matured seeds in long-day (LD). Here, we report that cotyledons accelerate flowering of early-maturing varieties not resulting from stored floral stimuli but by perceiving photoperiod after emergence. We found that light signal is indispensable to activate cotyledons for floral induction, and flowering promoting gene GmFT2a is required for cotyledon-dependent floral induction via upregulation of floral identity gene GmAP1. Interestingly, cotyledons are competent to support the entire life cycle of a cotyledon-only plant to produce seeds, underlying a new photoperiod study system in soybean and other dicots. Taken together, these results demonstrate a substantial role for cotyledons in flowering process, whereby we propose a 'cotyledon-based self-reliance' model highlighting floral induction from emergence as a key ecological adaptation for rapid flowering of SDPs grown in LD environments at high latitudes.


Adaptation, Physiological , Cotyledon/physiology , Glycine max/physiology , China , Flowers/physiology , Gene Expression Regulation, Plant , Light , Photoperiod , Plants, Genetically Modified , Soybean Proteins/genetics
14.
Plant Cell Environ ; 43(4): 934-944, 2020 04.
Article En | MEDLINE | ID: mdl-31981430

Day length has an important influence on flowering and growth habit in many plant species. In crops such as soybean, photoperiod sensitivity determines the geographical range over which a given cultivar can grow and flower. The soybean genome contains ~10 genes homologous to FT, a central regulator of flowering from Arabidopsis thaliana. However, the precise roles of these soybean FTs are not clearly. Here we show that one such gene, GmFT2b, promotes flowering under long-days (LDs). Overexpression of GmFT2b upregulates expression of flowering-related genes which are important in regulating flowering time. We propose a 'weight' model for soybean flowering under short-day (SD) and LD conditions. Furthermore, we examine GmFT2b sequences in 195 soybean cultivars, as well as flowering phenotypes, geographical distributions and maturity groups. We found that Hap3, a major GmFT2b haplotype, is associated with significantly earlier flowering at higher latitudes. We anticipate our assay to provide important resources for the genetic improvement of soybean, including new germplasm for soybean breeding, and also increase our understanding of functional diversity in the soybean FT gene family.


Glycine max/physiology , Plant Proteins/genetics , Transcription Factors/genetics , Adaptation, Physiological/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cloning, Molecular , Flowers/growth & development , Gene Editing , Gene Expression Regulation, Plant/genetics , Genetic Variation/genetics , Genetic Variation/physiology , Geography , Photoperiod , Plant Proteins/physiology , Glycine max/genetics , Glycine max/growth & development , Transcription Factors/physiology , Transcriptome
15.
Plant Biotechnol J ; 18(9): 1869-1881, 2020 09.
Article En | MEDLINE | ID: mdl-31981443

Flowering time is a critical determinant of the geographic distribution and regional adaptability of soybean (Glycine max) and is strongly regulated by photoperiod and temperature. In this study, quantitative trait locus (QTL) mapping and subsequent candidate gene analysis revealed that GmPRR37, encoding a pseudo-response regulator protein, is responsible for the major QTL qFT12-2, which was identified from a population of 308 recombinant inbred lines (RILs) derived from a cross between a very late-flowering soybean cultivar, 'Zigongdongdou (ZGDD)', and an extremely early-flowering cultivar, 'Heihe27 (HH27)', in multiple environments. Comparative analysis of parental sequencing data confirmed that HH27 contains a non-sense mutation that causes the loss of the CCT domain in the GmPRR37 protein. CRISPR/Cas9-induced Gmprr37-ZGDD mutants in soybean exhibited early flowering under natural long-day (NLD) conditions. Overexpression of GmPRR37 significantly delayed the flowering of transgenic soybean plants compared with wild-type under long photoperiod conditions. In addition, both the knockout and overexpression of GmPRR37 in soybean showed no significant phenotypic alterations in flowering time under short-day (SD) conditions. Furthermore, GmPRR37 down-regulated the expression of the flowering-promoting FT homologues GmFT2a and GmFT5a, and up-regulated flowering-inhibiting FT homologue GmFT1a expression under long-day (LD) conditions. We analysed haplotypes of GmPRR37 among 180 cultivars collected across China and found natural Gmprr37 mutants flower earlier and enable soybean to be cultivated at higher latitudes. This study demonstrates that GmPRR37 controls soybean photoperiodic flowering and provides opportunities to breed optimized cultivars with adaptation to specific regions and farming systems.


Glycine max , Photoperiod , CRISPR-Cas Systems/genetics , China , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine max/genetics , Glycine max/metabolism
16.
Plant Biotechnol J ; 18(1): 298-309, 2020 01.
Article En | MEDLINE | ID: mdl-31240772

Flowering time is a key agronomic trait that directly influences the successful adaptation of soybean (Glycine max) to diverse latitudes and farming systems. GmFT2a and GmFT5a have been extensively identified as flowering activators and integrators in soybean. Here, we identified two quantitative trait loci (QTLs) regions harbouring GmFT2a and GmFT5a, respectively, associated with different genetic effects on flowering under different photoperiods. We analysed the flowering time of transgenic plants overexpressing GmFT2a or GmFT5a, ft2a mutants, ft5a mutants and ft2aft5a double mutants under long-day (LD) and short-day (SD) conditions. We confirmed that GmFT2a and GmFT5a are not redundant, they collectively regulate flowering time, and the effect of GmFT2a is more prominent than that of GmFT5a under SD conditions whereas GmFT5a has more significant effects than GmFT2a under LD conditions. GmFT5a, not GmFT2a, was essential for soybean to adapt to high latitude regions. The ft2aft5a double mutants showed late flowering by about 31.3 days under SD conditions and produced significantly increased numbers of pods and seeds per plant compared to the wild type. We speculate that these mutants may have enormous yield potential for the tropics. In addition, we examined the sequences of these two loci in 202 soybean accessions and investigated the flowering phenotypes, geographical distributions and maturity groups within major haplotypes. These results will contribute to soybean breeding and regional adaptability.


CRISPR-Cas Systems , Flowers/growth & development , Glycine max/genetics , Quantitative Trait Loci , Adaptation, Biological/genetics , Mutagenesis , Photoperiod , Plant Proteins/genetics
17.
Int J Mol Sci ; 19(12)2018 Dec 01.
Article En | MEDLINE | ID: mdl-30513774

At present, the application of CRISPR/Cas9 in soybean (Glycine max (L.) Merr.) has been mainly focused on knocking out target genes, and most site-directed mutagenesis has occurred at single cleavage sites and resulted in short deletions and/or insertions. However, the use of multiple guide RNAs for complex genome editing, especially the deletion of large DNA fragments in soybean, has not been systematically explored. In this study, we employed CRISPR/Cas9 technology to specifically induce targeted deletions of DNA fragments in GmFT2a (Glyma16g26660) and GmFT5a (Glyma16g04830) in soybean using a dual-sgRNA/Cas9 design. We achieved a deletion frequency of 15.6% for target fragments ranging from 599 to 1618 bp in GmFT2a. We also achieved deletion frequencies of 12.1% for target fragments exceeding 4.5 kb in GmFT2a and 15.8% for target fragments ranging from 1069 to 1161 bp in GmFT5a. In addition, we demonstrated that these CRISPR/Cas9-induced large fragment deletions can be inherited. The T2 'transgene-free' homozygous ft2a mutants with a 1618 bp deletion exhibited the late-flowering phenotype. In this study, we developed an efficient system for deleting large fragments in soybean using CRISPR/Cas9; this system could benefit future research on gene function and improve agriculture via chromosome engineering or customized genetic breeding in soybean.


CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Genome, Plant , Glycine max/genetics , Base Sequence , Genes, Plant , Homozygote , Inheritance Patterns/genetics , Mutagenesis, Site-Directed , Mutation/genetics , Mutation Rate , Phenotype , Sequence Deletion
18.
Int J Mol Sci ; 19(10)2018 Oct 05.
Article En | MEDLINE | ID: mdl-30301169

As a genetically modified crop, transgenic soybean occupies the largest global scale with its food, nutritional, industrial, and pharmaceutical uses.Efficient transformation is a key factor for the improvement of genetically modified soybean. At present, the Agrobacterium-mediated method is primarily used for soybean transformation, but the efficiency of this method is still relatively low (below 5%) compared with rice (above 90%). In this study, we examined the influence of l-glutamine and/or l-asparagine on Agrobacterium-mediated transformation in soybean and explored the probable role in the process of Agrobacterium-mediated transformation. The results showed that when the amino acids l-glutamine and l-asparagine were added separately or together to the culture medium, the shoot induction frequency, elongation rate, and transformation frequency were improved. The combined effects of l-glutamine and l-asparagine were better than those of l-glutamine and l-asparagine alone. The 50 mg/L l-glutamine and 50 mg/L l-asparagine together can enhance the transformation frequency of soybean by attenuating the expression level of GmPRs (GmPR1, GmPR4, GmPR5, and GmPR10) and suppression of the plant defense response. The transgene was successfully transmitted to the T1 generation. This study will be useful in genetic engineering of soybean.


Agrobacterium tumefaciens/genetics , Asparagine/pharmacology , Culture Media/pharmacology , Glutamine/pharmacology , Glycine max/genetics , Transformation, Genetic/genetics , Gene Expression Regulation, Plant/drug effects , Genetic Engineering , Plant Roots/drug effects , Plant Shoots/drug effects , Plants, Genetically Modified/genetics , Transgenes/genetics
19.
Sci Rep ; 8(1): 13601, 2018 09 11.
Article En | MEDLINE | ID: mdl-30206281

Aluminium (Al) toxicity restrains water and nutrient uptake and is toxic to plant roots, ultimately inhibiting crop production. Here, we isolated and characterized a soybean glycine-rich protein-like gene (GmGRPL) that is mainly expressed in the root and that is regulated by Al treatment. Overexpression of GmGRPL can alleviate Al-induced root growth inhibition in Arabidopsis. The levels of IAA and ethylene in GmGRPL-overexpressing hairy roots were lower than those in control and RNA interference-exposed GmGRPL hairy roots with or without Al stress, which were mainly regulated by TAA1 and ACO, respectively. In transgenic soybean hairy roots, the MDA, H2O2 and O2-·content in GmGRPL-overexpressing hairy roots were less than that in control and RNA interference-exposed GmGRPL hairy roots under Al stress. In addition, IAA and ACC can enhance the expression level of the GmGRPL promoter with or without Al stress. These results indicated that GmGRPL can alleviate Al-induced root growth inhibition by regulating the level of IAA and ethylene and improving antioxidant activity.


Aluminum/toxicity , Arabidopsis/drug effects , Gene Expression Regulation, Plant , Glycine max/drug effects , Plant Proteins/genetics , Plant Roots/drug effects , RNA-Binding Proteins/genetics , Soil Pollutants/toxicity , Adaptation, Physiological/genetics , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Amino Acids, Cyclic/metabolism , Aminohydrolases/genetics , Aminohydrolases/metabolism , Antioxidants/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Ethylenes/metabolism , Genetic Complementation Test , Indoleacetic Acids/metabolism , Oxidative Stress , Plant Growth Regulators/metabolism , Plant Proteins/antagonists & inhibitors , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Stress, Physiological , Transgenes , Tryptophan Transaminase/genetics , Tryptophan Transaminase/metabolism
20.
Plant Biotechnol J ; 16(1): 176-185, 2018 01.
Article En | MEDLINE | ID: mdl-28509421

Flowering is an indication of the transition from vegetative growth to reproductive growth and has considerable effects on the life cycle of soya bean (Glycine max). In this study, we employed the CRISPR/Cas9 system to specifically induce targeted mutagenesis of GmFT2a, an integrator in the photoperiod flowering pathway in soya bean. The soya bean cultivar Jack was transformed with three sgRNA/Cas9 vectors targeting different sites of endogenous GmFT2a via Agrobacterium tumefaciens-mediated transformation. Site-directed mutations were observed at all targeted sites by DNA sequencing analysis. T1-generation soya bean plants homozygous for null alleles of GmFT2a frameshift mutated by a 1-bp insertion or short deletion exhibited late flowering under natural conditions (summer) in Beijing, China (N39°58', E116°20'). We also found that the targeted mutagenesis was stably heritable in the following T2 generation, and the homozygous GmFT2a mutants exhibited late flowering under both long-day and short-day conditions. We identified some 'transgene-clean' soya bean plants that were homozygous for null alleles of endogenous GmFT2a and without any transgenic element from the T1 and T2 generations. These 'transgene-clean' mutants of GmFT2a may provide materials for more in-depth research of GmFT2a functions and the molecular mechanism of photoperiod responses in soya bean. They will also contribute to soya bean breeding and regional introduction.


CRISPR-Cas Systems/genetics , Flowers/metabolism , Flowers/physiology , Glycine max/metabolism , Glycine max/physiology , CRISPR-Cas Systems/physiology , Flowers/genetics , Gene Editing , Genome, Plant/genetics , Mutagenesis/genetics , Mutagenesis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Glycine max/genetics
...