Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 14(6): 1237-44, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23456979

RESUMEN

The biofilm formation of a strain of the extremophile bacterium Acidiphilium sp., capable of donating electrons directly to electrodes, was studied by different surface characterization techniques. We develop a method that allows the simultaneous study of bacterial biofilms by means of fluorescence microscopy and atomic force microscopy (AFM), in which transparent graphitic flakes deposited on a glass substrate are used as a support for the biofilm. The majority of the cells present on the surface were viable, and the growth of the biofilms over time showed a critical increase of the extracellular polymeric substances (EPS) as well as the formation of nanosized particles inside the biofilm. Also, the presence of Fe in Acidiphilium biofilms was determined by X-ray photoelectron spectroscopy (XPS), whereas surface-enhanced infrared absorption spectroscopy indicated the presence of redox-active proteins.


Asunto(s)
Acidiphilium/fisiología , Biopelículas , Grafito/química , Microscopía de Fuerza Atómica , Nanoestructuras/química , Espectroscopía de Fotoelectrones
2.
Biosens Bioelectron ; 26(2): 877-80, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20678913

RESUMEN

An aspect in microbial fuel cell research that is currently of great interest is the development of bacterial cathodes. Bacterial cathodes that catalyze oxygen reduction to water at low pH have the advantage of overcoming the kinetic limitations due to the requirement of 4 protons per molecule reduced. In this work we have studied the performance of a biocathode using as electrocatalyst an acidophile microorganism: Acidithiobacillus ferrooxidans. Growth of the microorganism directly on the electrode took place using an applied voltage of 0 V vs. SCE as the only energy source and without adding redox mediators to the solution. Current densities of up to 5 A m(-2) were measured for O2 reduction in the At. ferrooxidans cathode at pH 2.0 and the electrocatalytic wave was shifted 300 mV to higher potential compared to the control graphite electrodes without the bacterium.


Asunto(s)
Acidithiobacillus/fisiología , Fuentes de Energía Bioeléctrica/microbiología , Electrodos , Grafito/química , Oxígeno/metabolismo , Catálisis , Proliferación Celular , Transporte de Electrón , Diseño de Equipo , Análisis de Falla de Equipo , Oxidación-Reducción
3.
Nanotechnology ; 21(30): 305703, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20603531

RESUMEN

In this work we combine organic molecules of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with iron atoms on an Au (111) substrate in ultra-high vacuum conditions at different temperatures. By means of scanning tunnelling microscopy (STM) we study the formation of stable 2D metal-organic structures. We show that at certain growth conditions (temperature, time and coverage) stable 'ladder-like' nanostructures are obtained. These are the result of connecting together two metal-organic chains through PTCDA molecules placed perpendicularly, as rungs of a ladder. These structures, stable up to 450 K, can be extended in a 2D layer covering the entire surface and presenting different rotation domains. STM images at both polarities show a contrast reversal between the two molecules at the unit cell. By means of density functional theory (DFT) calculations, we confirm the stability of these structures and that their molecular orbitals are placed separately at the different molecules.

4.
Nature ; 454(7206): 865-8, 2008 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-18704082

RESUMEN

Graphite vaporization provides an uncontrolled yet efficient means of producing fullerene molecules. However, some fullerene derivatives or unusual fullerene species might only be accessible through rational and controlled synthesis methods. Recently, such an approach has been used to produce isolable amounts of the fullerene C(60) from commercially available starting materials. But the overall process required 11 steps to generate a suitable polycyclic aromatic precursor molecule, which was then dehydrogenated in the gas phase with a yield of only about one per cent. Here we report the formation of C(60) and the triazafullerene C(57)N(3) from aromatic precursors using a highly efficient surface-catalysed cyclodehydrogenation process. We find that after deposition onto a platinum (111) surface and heating to 750 K, the precursors are transformed into the corresponding fullerene and triazafullerene molecules with about 100 per cent yield. We expect that this approach will allow the production of a range of other fullerenes and heterofullerenes, once suitable precursors are available. Also, if the process is carried out in an atmosphere containing guest species, it might even allow the encapsulation of atoms or small molecules to form endohedral fullerenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA