Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
J Med Chem ; 67(5): 3287-3306, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38431835

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective calcium ion channel highly expressed in the primary sensory neurons, functioning as a polymodal sensor for exogenous and endogenous stimuli, and has been implicated in neuropathic pain and respiratory disease. Herein, we describe the optimization of potent, selective, and orally bioavailable TRPA1 small molecule antagonists with strong in vivo target engagement in rodent models. Several lead molecules in preclinical single- and short-term repeat-dose toxicity studies exhibited profound prolongation of coagulation parameters. Based on a thorough investigative toxicology and clinical pathology analysis, anticoagulation effects in vivo are hypothesized to be manifested by a metabolite─generated by aldehyde oxidase (AO)─possessing a similar pharmacophore to known anticoagulants (i.e., coumarins, indandiones). Further optimization to block AO-mediated metabolism yielded compounds that ameliorated coagulation effects in vivo, resulting in the discovery and advancement of clinical candidate GDC-6599, currently in Phase II clinical trials for respiratory indications.


Respiratory Tract Diseases , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , TRPA1 Cation Channel , Aldehyde Oxidase/metabolism , Oxidoreductases/metabolism , Cytoskeletal Proteins/metabolism
2.
Toxicol Appl Pharmacol ; 475: 116627, 2023 09 15.
Article En | MEDLINE | ID: mdl-37453479

SMARCA2 and SMARCA4 are the ATPases of the SWI/SNF chromatin remodeling complex, which play a significant role in regulating transcriptional activity and DNA repair in cells. SMARCA2 has become an appealing synthetic-lethal, therapeutic target in oncology, as mutational loss of SMARCA4 in many cancers leads to a functional dependency on residual SMARCA2 activity. Thus, for therapeutic development, an important step is understanding any potential safety target-associated liabilities of SMARCA2 inhibition. To best mimic a SMARCA2 therapeutic, a tamoxifen-inducible (TAMi) conditional knockout (cKO) rat was developed using CRISPR technology to understand the safety profile of Smarca2 genetic ablation in a model system that avoids potential juvenile and developmental phenotypes. As the rat is the prototypical rodent species utilized in toxicology studies, a comprehensive toxicological and pathological assessment was conducted in both heterozygote and homozygous knockout rats at timepoints up to 28 days, alongside relevant corresponding controls. To our knowledge, this represents the first TAMi cKO rat model utilized for safety assessment evaluations. No significant target-associated phenotypes were observed when Smarca2 was ablated in mature (11- to 15-week-old) rats; however subsequent induction of SMARCA4 was evident that could indicate potential compensatory activity. Similar to mouse models, rat CreERT2-transgene and TAMi toxicities were characterized to avoid confounding study interpretation. In summary, a lack of significant safety findings in Smarca2 cKO rats highlights the potential for therapeutics targeting selective SMARCA2 ATPase activity; such therapies are predicted to be tolerated in patients without eliciting significant on-target toxicities.


Neoplasms , Tamoxifen , Mice , Rats , Animals , Tamoxifen/toxicity , Adenosine Triphosphatases , Mutation
3.
Toxicol Appl Pharmacol ; 418: 115494, 2021 05 01.
Article En | MEDLINE | ID: mdl-33722668

Tumor progression locus 2 (Tpl2, gene name MAP3K8), a mitogen-activated protein kinase, is widely expressed in immune and non-immune cells to integrate tumor necrosis factor (TNF), toll-like receptors (TLRs), and interleukin-1 (IL1) receptor signaling to regulate inflammatory response. Given its central role in inflammatory response, Tpl2 is an attractive small molecule drug target. However, the role of Tpl2 as an oncogene or tumor suppressor gene remains controversial, and its function outside immune cells is not understood. We therefore utilized a Tpl2 kinase dead (Tpl2-KD) mouse model in an 18-month aging study to further elucidate Tpl2 effects on lifespan and chronic disease. Histopathological studies revealed the incidence and severity of spontaneous tumors and non-neoplastic lesions were comparable between wild type and Tpl2-KD mice. The only finding was that male Tpl2-KD mice had higher bodyweight and an increased incidence of liver steatosis, suggesting a sex-specific role for Tpl2 in hepatic lipid metabolism. In conclusion, loss of Tpl2 kinase activity did not lead to increased tumorigenesis over aging in mice but affected likely alterations in lipid metabolism in male animals.


Fatty Liver/enzymology , Inflammation/enzymology , Liver/enzymology , MAP Kinase Kinase Kinases/metabolism , Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Age Factors , Animals , Fatty Liver/genetics , Fatty Liver/pathology , Female , Genotype , Inflammation/genetics , Lipid Metabolism , Liver/pathology , MAP Kinase Kinase Kinases/deficiency , MAP Kinase Kinase Kinases/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/genetics , Neoplasms/pathology , Phenotype , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Sex Factors
4.
Toxicol Pathol ; 48(3): 465-480, 2020 04.
Article En | MEDLINE | ID: mdl-32124659

Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.


Pyrazoles/pharmacology , Pyridines/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Dogs , Drug Evaluation, Preclinical/methods , Ether-A-Go-Go Potassium Channels/drug effects , Female , Humans , Male , Rats , Rats, Sprague-Dawley
5.
Sci Transl Med ; 10(468)2018 11 21.
Article En | MEDLINE | ID: mdl-30463918

Preclinical and clinical evidence indicates that a subset of asthma is driven by type 2 cytokines such as interleukin-4 (IL-4), IL-5, IL-9, and IL-13. Additional evidence predicts pathogenic roles for IL-6 and type I and type II interferons. Because each of these cytokines depends on Janus kinase 1 (JAK1) for signal transduction, and because many of the asthma-related effects of these cytokines manifest in the lung, we hypothesized that lung-restricted JAK1 inhibition may confer therapeutic benefit. To test this idea, we synthesized iJak-381, an inhalable small molecule specifically designed for local JAK1 inhibition in the lung. In pharmacodynamic models, iJak-381 suppressed signal transducer and activator of transcription 6 activation by IL-13. Furthermore, iJak-381 suppressed ovalbumin-induced lung inflammation in both murine and guinea pig asthma models and improved allergen-induced airway hyperresponsiveness in mice. In a model driven by human allergens, iJak-381 had a more potent suppressive effect on neutrophil-driven inflammation compared to systemic corticosteroid administration. The inhibitor iJak-381 reduced lung pathology, without affecting systemic Jak1 activity in rodents. Our data show that local inhibition of Jak1 in the lung can suppress lung inflammation without systemic Jak inhibition in rodents, suggesting that this strategy might be effective for treating asthma.


Asthma/drug therapy , Asthma/enzymology , Janus Kinase 1/antagonists & inhibitors , Lung/enzymology , Protein Kinase Inhibitors/therapeutic use , Administration, Inhalation , Allergens , Animals , Asthma/pathology , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Disease Models, Animal , Eosinophils/drug effects , Eosinophils/metabolism , Eosinophils/pathology , Guinea Pigs , Inflammation/pathology , Janus Kinase 1/metabolism , Lung/drug effects , Lung/pathology , Ovalbumin , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Signal Transduction , Treatment Outcome
6.
PLoS One ; 13(6): e0198099, 2018.
Article En | MEDLINE | ID: mdl-29879147

Drug-related sinusoidal dilatation (SD) is a common form of hepatotoxicity associated with oxaliplatin-based chemotherapy used prior to resection of colorectal liver metastases (CRLM). Recently, hepatic SD has also been associated with anti-delta like 4 (DLL4) cancer therapies targeting the NOTCH pathway. To investigate the hypothesis that NOTCH signaling plays an important role in drug-induced SD, gene expression changes were examined in livers from anti-DLL4 and oxaliplatin-induced SD in non-human primate (NHP) and patients, respectively. Putative mechanistic biomarkers of bevacizumab (bev)-mediated protection against oxaliplatin-induced SD were also investigated. RNA was extracted from whole liver sections or centrilobular regions by laser-capture microdissection (LCM) obtained from NHP administered anti-DLL4 fragment antigen-binding (F(ab')2 or patients with CRLM receiving oxaliplatin-based chemotherapy with or without bev. mRNA expression was quantified using high-throughput real-time quantitative PCR. Significance analysis was used to identify genes with differential expression patterns (false discovery rate (FDR) < 0.05). Eleven (CCL2, CCND1, EFNB2, ERG, ICAM1, IL16, LFNG, NOTCH1, NOTCH4, PRDX1, and TGFB1) and six (CDH5, EFNB2, HES1, IL16, MIK67, HES1 and VWF) candidate genes were differentially expressed in the liver of anti-DLL4- and oxaliplatin-induced SD, respectively. Addition of bev to oxaliplatin-based chemotherapy resulted in differential changes in hepatic CDH5, HEY1, IL16, JAG1, MMP9, NOTCH4 and TIMP1 expression. This work implicates NOTCH and IL16 pathways in the pathogenesis of drug-induced SD and further explains the hepato-protective effect of bev in oxaliplatin-induced SD observed in CRLM patients.


Chemical and Drug Induced Liver Injury/genetics , Colorectal Neoplasms/drug therapy , Liver/drug effects , Liver/pathology , Oxaliplatin/adverse effects , Transcriptome , Aged , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Capillaries/drug effects , Capillaries/metabolism , Capillaries/pathology , Colorectal Neoplasms/pathology , Dilatation, Pathologic/chemically induced , Dilatation, Pathologic/genetics , Female , Gene Expression Profiling , Humans , Liver/blood supply , Liver/metabolism , Liver Neoplasms/secondary , Macaca fascicularis , Male , Middle Aged , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/genetics , Oxaliplatin/administration & dosage , Transcriptome/drug effects
7.
Toxicol Pathol ; 46(3): 324-335, 2018 04.
Article En | MEDLINE | ID: mdl-29683091

Bone marrow toxicity is a common finding when assessing safety of drug candidate molecules. Standard hematoxylin and eosin (H&E) marrow tissue sections are typically manually evaluated to provide a semiquantitative assessment of overall cellularity. Here, we developed an automated image analysis method that allows quantitative assessment of changes in bone marrow cell population in sternal bone. In order to test whether the method was repeatable and sensitive, we compared the automated method with manual subjective histopathology scoring of total cellularity in rat sternal bone marrow samples across 17 independently run studies. The automated method was consistent with manual scoring methodology for detecting altered bone marrow cellularity and, in multiple cases, identified changes at lower doses. The image analysis method allows rapid and more quantitative assessment of bone marrow toxicity compared to manual examination of H&E slides, making it an excellent tool to aid detection of bone marrow cell depletion in preclinical toxicologic studies.


Bone Marrow Cells/drug effects , Drug Evaluation, Preclinical/methods , Image Processing, Computer-Assisted/methods , Animals , Eosine Yellowish-(YS) , Female , Hematoxylin , Male , Rats , Rats, Sprague-Dawley , Staining and Labeling
8.
Toxicol Pathol ; 46(3): 336-347, 2018 04.
Article En | MEDLINE | ID: mdl-29683092

The bone marrow is an important site for assessment of the hematopoietic toxicity of new drug candidates. Here, we extended our previous work, where we developed a computer algorithm to automatically quantitate overall bone marrow cell density by analyzing digitized images of standard hematoxylin and eosin (H&E) slides of rat bone marrow and further evaluated the capability to quantify myeloid: erythroid + lymphoid (M:EL) ratio and megakaryocyte cell density. We tested the algorithm in a toxicity study, where rats were dosed with two molecules known to affect bone marrow composition, monomethyl auristatin E, and a Bcl-xL inhibitor. The image analysis method detected significant changes in M:EL and megakaryocyte number that were either not found or semiquantitatively described by manual microscopic observation of the same slides. The image analysis results were consistent with other more established but time-consuming methods that measure changes in bone marrow cell composition: smear cytology, flow cytometry, and microscopic assessment. Our work demonstrates the feasibility of a rapid and more quantitative assessment of changes in bone marrow cell lineage composition using a computer algorithm compared to microscopic examination of H&E-stained bone marrow sections.


Algorithms , Bone Marrow Cells/cytology , Image Processing, Computer-Assisted/methods , Animals , Cell Count , Cell Lineage , Eosine Yellowish-(YS) , Female , Hematoxylin , Male , Rats , Rats, Sprague-Dawley , Staining and Labeling
9.
Toxicol Pathol ; 45(2): 353-361, 2017 02.
Article En | MEDLINE | ID: mdl-27565173

Inhibition of the mitogen-activated protein kinase/extracellular signal-regulated (MAPK/ERK) pathway is an attractive therapeutic approach for human cancer therapy. In the course of evaluating structurally distinct small molecule inhibitors that target mitogen-activated protein kinase kinase (MEK) and ERK kinases in this pathway, we observed an unusual, dose-related increase in the incidence of green serum in preclinical safety studies in rats. Having ruled out changes in bilirubin metabolism, we demonstrated a 2- to 3-fold increase in serum ceruloplasmin levels, likely accounting for the observed green color. This was not associated with an increase in α-2-macroglobulin, the major acute phase protein in rats, indicating that ceruloplasmin levels increased independently of an inflammatory response. Elevated serum ceruloplasmin was also not correlated with changes in total hepatic copper, adverse clinical signs, or pathology findings indicative of copper toxicity, therefore discounting copper overload as the etiology. Both ERK and MEK inhibitors led to increased ceruloplasmin secretion in rat primary hepatocyte cultures in vitro, and this increase was associated with activation of the Forkhead box, class O1 (FOXO1) transcription factor. In conclusion, increased serum ceruloplasmin induced by MEK and ERK inhibition is due to increased synthesis by hepatocytes from FOXO1 activation and results in the nonadverse development of green serum in rats.


Ceruloplasmin/analysis , Copper/blood , Enzyme Inhibitors/toxicity , MAP Kinase Signaling System/drug effects , Serum/chemistry , Small Molecule Libraries/toxicity , Animals , Blood Circulation , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Female , Liver/chemistry , Liver/drug effects , Male , Rats, Sprague-Dawley , Small Molecule Libraries/chemistry , Structure-Activity Relationship
10.
J Med Chem ; 59(11): 5520-41, 2016 06 09.
Article En | MEDLINE | ID: mdl-27167326

p21-activated kinase 1 (PAK1) has an important role in transducing signals in several oncogenic pathways. The concept of inhibiting this kinase has garnered significant interest over the past decade, particularly for targeting cancers associated with PAK1 amplification. Animal studies with the selective group I PAK (pan-PAK1, 2, 3) inhibitor G-5555 from the pyrido[2,3-d]pyrimidin-7-one class uncovered acute toxicity with a narrow therapeutic window. To attempt mitigating the toxicity, we introduced significant structural changes, culminating in the discovery of the potent pyridone side chain analogue G-9791. Mouse tolerability studies with this compound, other members of this series, and compounds from two structurally distinct classes revealed persistent toxicity and a correlation of minimum toxic concentrations and PAK1/2 mediated cellular potencies. Broad screening of selected PAK inhibitors revealed PAK1, 2, and 3 as the only overlapping targets. Our data suggest acute cardiovascular toxicity resulting from the inhibition of PAK2, which may be enhanced by PAK1 inhibition, and cautions against continued pursuit of pan-group I PAK inhibitors in drug discovery.


Cardiovascular Diseases/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , p21-Activated Kinases/antagonists & inhibitors , Acute Disease , Animals , Dose-Response Relationship, Drug , Female , Mice , Mice, Inbred BALB C , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridones , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , p21-Activated Kinases/metabolism
11.
Reprod Toxicol ; 63: 82-95, 2016 08.
Article En | MEDLINE | ID: mdl-27211603

An enhanced embryo-fetal development study was conducted in cynomolgus monkeys using pateclizumab, a humanized IgG1 monoclonal antibody (mAb) targeting lymphotoxin-alpha. Pateclizumab administration between gestation days (GD) 20 and 132 did not induce maternal or developmental toxicities. The ratio of fetal-to-maternal serum concentration of pateclizumab was 0.73% on GD 50 and 61% by GD 139. Decreased fetal inguinal lymph node-to-body weight ratio was present in the high-dose group without microscopic abnormalities, a change attributable to inhibition of lymphocyte recruitment, which is a pharmacologic effect of pateclizumab during late lymph node development. The effect was observed in inguinal but not submandibular or mesenteric lymph nodes; this was attributed to differential susceptibility related to sequential lymph node development. Placental transfer of therapeutic IgG1 antibodies; thus, begins during the first trimester in non-human primates. Depending on the potency and dose levels administered, antibody levels in the fetus may be pharmacologically or toxicologically relevant.


Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Embryo, Mammalian/drug effects , Embryonic Development/drug effects , Fetal Development/drug effects , Lymphotoxin-alpha/immunology , Maternal-Fetal Exchange , Animals , Antibodies, Monoclonal, Humanized/blood , Dendritic Cells, Follicular/drug effects , Female , Immunoglobulin G/blood , Immunoglobulin G/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/growth & development , Lymph Nodes/immunology , Lymphocytosis/chemically induced , Macaca fascicularis , Male , Pregnancy
12.
Clin Cancer Res ; 22(6): 1469-79, 2016 Mar 15.
Article En | MEDLINE | ID: mdl-26589434

PURPOSE: Although agents targeting Delta-like ligand 4 (DLL4) have shown great promise for angiogenesis-based cancer therapy, findings in recent studies have raised serious safety concerns. To further evaluate the potential for therapeutic targeting of the DLL4 pathway, we pursued a novel strategy to reduce toxicities related to DLL4 inhibition by modulating the pharmacokinetic (PK) properties of an anti-DLL4 antibody. EXPERIMENTAL DESIGN: The F(ab')2 fragment of anti-DLL4 antibody (anti-DLL4 F(ab')2) was generated and assessed in efficacy and toxicity studies. RESULTS: Anti-DLL4 F(ab')2 enables greater control over the extent and duration of DLL4 inhibition, such that intermittent dosing of anti-DLL4 F(ab')2 can maintain significant antitumor activity while markedly mitigating known toxicities associated with continuous pathway inhibition. CONCLUSIONS: PK modulation has potentially broad implications for development of antibody-based therapeutics. Our safety studies with anti-DLL4 F(ab')2 also provide new evidence reinforcing the notion that the DLL4 pathway is extremely sensitive to pharmacologic perturbation, further underscoring the importance of exercising caution to safely harness this potent pathway in humans.


Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Angiogenesis Inhibitors/adverse effects , Angiogenesis Inhibitors/pharmacokinetics , Animals , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Immunoglobulin Fab Fragments , Liver/drug effects , Liver/metabolism , Liver/pathology , Macaca fascicularis , Mice , Rats , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
13.
Mol Cancer Ther ; 12(10): 1968-80, 2013 Oct.
Article En | MEDLINE | ID: mdl-23873850

Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2-M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1 should potentiate the antitumor effect of chemotherapeutic agents by inactivating the postreplication checkpoint, causing premature entry into mitosis with damaged DNA resulting in mitotic catastrophe. Here, we describe the characterization of GNE-900, an ATP-competitive, selective, and orally bioavailable ChK1 inhibitor. In combination with chemotherapeutic agents, GNE-900 sustains ATR/ATM signaling, enhances DNA damage, and induces apoptotic cell death. The kinetics of checkpoint abrogation seems to be more rapid in p53-mutant cells, resulting in premature mitotic entry and/or accelerated cell death. Importantly, we show that GNE-900 has little single-agent activity in the absence of chemotherapy and does not grossly potentiate the cytotoxicity of gemcitabine in normal bone marrow cells. In vivo scheduling studies show that optimal administration of the ChK1 inhibitor requires a defined lag between gemcitabine and GNE-900 administration. On the refined combination treatment schedule, gemcitabine's antitumor activity against chemotolerant xenografts is significantly enhanced and dose-dependent exacerbation of DNA damage correlates with extent of tumor growth inhibition. In summary, we show that in vivo potentiation of gemcitabine activity is mechanism based, with optimal efficacy observed when S-phase arrest and release is followed by checkpoint abrogation with a ChK1 inhibitor.


Deoxycytidine/analogs & derivatives , Neoplasms/drug therapy , Protein Kinase Inhibitors/administration & dosage , Protein Kinases/metabolism , Pyridines/administration & dosage , Pyrroles/administration & dosage , Antineoplastic Combined Chemotherapy Protocols , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Checkpoint Kinase 1 , DNA Damage/drug effects , DNA Replication/drug effects , Deoxycytidine/administration & dosage , Humans , Mitosis/drug effects , Mitosis/genetics , Neoplasms/genetics , Neoplasms/pathology , Phosphorylation/drug effects , Gemcitabine
14.
MAbs ; 5(4): 540-54, 2013.
Article En | MEDLINE | ID: mdl-23774668

Pharmacokinetic (PK) and immunohistochemistry (IHC) assays are essential to the evaluation of the safety and efficacy of therapeutic monoclonal antibodies (mAb) during drug development. These methods require reagents with a high degree of specificity because low concentrations of therapeutic antibody need to be detected in samples containing high concentrations of endogenous human immunoglobulins. Current assay reagent generation practices are labor-intensive and time-consuming. Moreover, these practices are molecule-specific and so only support one assay for one program at a time. Here, we describe a strategy to generate a unique assay reagent, 10C4, that preferentially recognizes a panel of recombinant human mAbs over endogenous human immunoglobulins. This "panel-specific" feature enables the reagent to be used in PK and IHC assays for multiple structurally-related therapeutic mAbs. Characterization revealed that the 10C4 epitope is conformational, extensive and mainly composed of non-CDR residues. Most key contact residues were conserved among structurally-related therapeutic mAbs, but the combination of these residues exists at low prevalence in endogenous human immunoglobulins. Interestingly, an indirect contact residue on the heavy chain of the therapeutic appears to play a critical role in determining whether or not it can bind to 10C4, but has no affect on target binding. This may allow us to improve the binding of therapeutic mAbs to 10C4 for assay development in the future. Here, for the first time, we present a strategy to develop a panel-specific reagent that can expedite the development of multiple clinical assays for structurally-related therapeutic mAbs.


Antibodies, Anti-Idiotypic , Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal, Murine-Derived , Animals , Antibodies, Anti-Idiotypic/chemistry , Antibodies, Anti-Idiotypic/immunology , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Humans , Hybridomas , Mice , Mice, Inbred BALB C
15.
Toxicol Appl Pharmacol ; 266(1): 86-94, 2013 Jan 01.
Article En | MEDLINE | ID: mdl-23142475

Several toxicities are clearly driven by free drug concentrations in plasma, such as toxicities related to on-target exaggerated pharmacology or off-target pharmacological activity associated with receptors, enzymes or ion channels. However, there are examples in which organ toxicities appear to correlate better with total drug concentrations in the target tissues, rather than with free drug concentrations in plasma. Here we present a case study in which a small molecule Met inhibitor, GEN-203, with significant liver and bone marrow toxicity in preclinical species was modified with the intention of increasing the safety margin. GEN-203 is a lipophilic weak base as demonstrated by its physicochemical and structural properties: high LogD (distribution coefficient) (4.3) and high measured pKa (7.45) due to the basic amine (N-ethyl-3-fluoro-4-aminopiperidine). The physicochemical properties of GEN-203 were hypothesized to drive the high distribution of this compound to tissues as evidenced by a moderately-high volume of distribution (Vd>3l/kg) in mouse and subsequent toxicities of the compound. Specifically, the basicity of GEN-203 was decreased through addition of a second fluorine in the 3-position of the aminopiperidine to yield GEN-890 (N-ethyl-3,3-difluoro-4-aminopiperidine), which decreased the volume of distribution of the compound in mouse (Vd=1.0l/kg), decreased its tissue drug concentrations and led to decreased toxicity in mice. This strategy suggests that when toxicity is driven by tissue drug concentrations, optimization of the physicochemical parameters that drive tissue distribution can result in decreased drug concentrations in tissues, resulting in lower toxicity and improved safety margins.


Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Female , Humans , Hydrogen-Ion Concentration/drug effects , Male , Mice , Mice, Nude , Proto-Oncogene Proteins c-met/metabolism , Random Allocation , Tissue Distribution/drug effects , Tissue Distribution/physiology
16.
Toxicol Sci ; 131(1): 247-58, 2013 Jan.
Article En | MEDLINE | ID: mdl-22956632

Inhibitor-of-apoptosis (IAP) proteins suppress apoptosis and are overexpressed in a variety of cancers. Small-molecule IAP antagonists are currently being tested in clinical trials as novel cancer therapeutics. GDC-0152 is a small-molecule drug that triggers tumor cell apoptosis by selectively antagonizing IAPs. GDC-0152 induces NF-κB transcriptional activity leading to expression of several chemokines and cytokines, of which tumor necrosis factor alpha (TNF-α) is the most important for single-agent tumor activity. TNF-α is a pleiotropic cytokine that drives a variety of cellular responses, comprising inflammation, proliferation, and cell survival or death depending on the cellular context. As malignant and normal cells produce TNF-α upon IAP antagonism, increased TNF-α could drive both efficacy and toxicity. The toxicity profile of GDC-0152 in dogs and rats was characterized after iv dose administration once every 2 weeks for four doses. Findings in both species consisted of a dose-related, acute, systemic inflammatory response, and hepatic injury. Laboratory findings included elevated plasma cytokines, an inflammatory leukogram, and increased liver transaminases with histopathological findings of inflammatory infiltrates and apoptosis/necrosis in multiple tissues; a toxicology profile consistent with TNF-α-mediated toxicity. Dogs exhibited more severe findings than rats, and humans did not exhibit these findings, at comparable exposures across species. Furthermore, elevations in blood neutrophil count, serum monocyte chemoattractant protein-1, and other markers of inflammation corresponded to GDC-0152 exposure and toxicity and thus may have utility as safety biomarkers.


Antineoplastic Agents/toxicity , Cyclohexanes/toxicity , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Pyrroles/toxicity , Tumor Necrosis Factor-alpha/blood , Animals , Antineoplastic Agents/blood , Chemokines/blood , Cyclohexanes/blood , Dogs , Female , Liver/drug effects , Liver/immunology , Liver/metabolism , Liver/pathology , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Pyrroles/blood , Rats , Rats, Sprague-Dawley , Species Specificity , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/pathology , Toxicity Tests , Tumor Necrosis Factor-alpha/pharmacology
17.
Mol Cancer Ther ; 11(3): 752-62, 2012 Mar.
Article En | MEDLINE | ID: mdl-22222630

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.


Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/chemistry , Antibody Affinity/immunology , Antibody Specificity/immunology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Immunohistochemistry , Indium Radioisotopes/chemistry , Indium Radioisotopes/pharmacokinetics , Iodine Radioisotopes/chemistry , Iodine Radioisotopes/pharmacokinetics , Mice , Mice, Nude , Multimodal Imaging , Positron-Emission Tomography , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , Tissue Distribution , Tomography, X-Ray Computed , Trastuzumab , Vascular Endothelial Growth Factor A/immunology , Vascular Endothelial Growth Factor A/metabolism
18.
Xenobiotica ; 42(5): 456-65, 2012 May.
Article En | MEDLINE | ID: mdl-22122353

The R- and S-enantiomer of N-(4-(3-(1-ethyl-3,3-difluoropiperidin-4-ylamino)-1H-pyrazolo[3,4-b]pyridin-4-yloxy)-3-fluorophenyl)-2-(4-fluorophenyl)-3-oxo-2,3-dihydropyridazine-4-carboxamide are novel MET kinase inhibitors that have been investigated as potential anticancer agents. The effect of the chirality of these compounds on preclinical in vivo pharmacokinetics and toxicity was studied. The plasma clearance for the S-enantiomer was low in mice and monkeys (23.7 and 7.8 mL min(-1) kg(-1), respectively) and high in rats (79.2 mL min(-1) kg(-1)). The R/S enantiomer clearance ratio was 1.5 except in rats (0.49). After oral single-dose administration at 5 mg kg(-1) the R/S enantiomer ratio of AUC(inf) was 0.95, 1.9 and 0.41 in mice, rats and monkeys, respectively. In an oral single-dose dose-ranging study at 200 and 500 mg kg(-1) and multi-dose toxicity study in mice plasma AUC exposure was approximately 2- to 3-fold higher for the R-enantiomer compared to the S-enantiomer. Greater toxicity of the S-enantiomer was observed which appeared to be due to high plasma C(min) values and tissue concentrations approximately 24 h after the final dose. Both enantiomers showed low to moderate permeability in MDCKI cells with no significant efflux, no preferential distribution into red blood cells and similar plasma protein binding in vitro. Overall, the differences between the enantiomers with respect to low dose pharmacokinetics and in vitro properties were relatively modest. However, toxicity results warrant further development of the R-enantiomer over the S-enantiomer.


Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazoles/pharmacokinetics , Pyridazines/pharmacokinetics , Administration, Oral , Animals , Blood Proteins/metabolism , Body Weight , Cell Line , Cell Membrane Permeability , Dogs , Drug Evaluation, Preclinical , Female , Macaca fascicularis , Male , Mice , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/administration & dosage , Pyrazoles/blood , Pyrazoles/chemistry , Pyridazines/administration & dosage , Pyridazines/blood , Pyridazines/chemistry , Rats , Rats, Sprague-Dawley , Stereoisomerism , Time Factors
19.
Toxicol Sci ; 125(1): 187-95, 2012 Jan.
Article En | MEDLINE | ID: mdl-21976371

MEK, a kinase downstream of Ras and Raf oncogenes, constitutes a high priority target in oncology research. MEK small molecule inhibitors cause soft tissue mineralization in rats secondary to serum inorganic phosphorus (iP) elevation, but the molecular mechanism for this toxicity remains undetermined. We performed investigative studies with structurally distinct MEK inhibitors GEN-A and PD325901 (PD-901) in Sprague-Dawley rats. Our data support a mechanism that involves FGF-23 signal blockade in the rat kidney, causing transcriptional upregulation of 25-hydroxyvitamin D(3) 1-alpha-hydroxylase (Cyp27b1), the rate-limiting enzyme in vitamin D activation, and downregulation of 1,25-dihydroxyvitamin D(3) 24-hydroxylase (Cyp24a1), the enzyme that initiates the degradation of the active form of vitamin D. These transcriptional changes increase serum vitamin D levels, which in turn drive the increase in serum iP, leading to soft tissue mineralization in the rat.


Fibroblast Growth Factors/antagonists & inhibitors , Kidney/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Phosphorus/blood , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Animals , Calcium/blood , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Gene Expression/drug effects , Gene Expression Profiling , Homeostasis/drug effects , Kidney/enzymology , Kidney/metabolism , Male , Molecular Structure , Parathyroid Hormone/blood , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Tandem Mass Spectrometry , Vitamin D/blood
20.
Am J Physiol Regul Integr Comp Physiol ; 298(3): R534-47, 2010 Mar.
Article En | MEDLINE | ID: mdl-20032263

NGF has been suggested to play a role in urinary bladder dysfunction by mediating inflammation, as well as morphological and functional changes, in sensory and sympathetic neurons innervating the urinary bladder. To further explore the role of NGF in bladder sensory function, we generated a transgenic mouse model of chronic NGF overexpression in the bladder using the urothelium-specific uroplakin II (UPII) promoter. NGF mRNA and protein were expressed at higher levels in the bladders of NGF-overexpressing (NGF-OE) transgenic mice compared with wild-type littermate controls from postnatal day 7 through 12-16 wk of age. Overexpression of NGF led to urinary bladder enlargement characterized by marked nerve fiber hyperplasia in the submucosa and detrusor smooth muscle and elevated numbers of tissue mast cells. There was a marked increase in the density of CGRP- and substance P-positive C-fiber sensory afferents, neurofilament 200-positive myelinated sensory afferents, and tyrosine hydroxylase-positive sympathetic nerve fibers in the suburothelial nerve plexus. CGRP-positive ganglia were also present in the urinary bladders of transgenic mice. Transgenic mice had reduced urinary bladder capacity and an increase in the number and amplitude of nonvoiding bladder contractions under baseline conditions in conscious open-voiding cystometry. These changes in urinary bladder function were further associated with an increased referred somatic pelvic hypersensitivity. Thus, chronic urothelial NGF overexpression in transgenic mice leads to neuronal proliferation, focal increases in urinary bladder mast cells, increased urinary bladder reflex activity, and pelvic hypersensitivity. NGF-overexpressing mice may, therefore, provide a useful transgenic model for exploring the role of NGF in urinary bladder dysfunction.


Nerve Growth Factor/genetics , Urinary Bladder, Overactive/physiopathology , Urinary Bladder/physiology , Urothelium/physiology , Animals , Body Weight , Cystitis/pathology , Cystitis/physiopathology , Gene Expression/physiology , Mast Cells/pathology , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Smooth/innervation , Muscle, Smooth/pathology , Muscle, Smooth/physiology , Nerve Growth Factor/metabolism , Organ Size , RNA, Messenger/metabolism , Reflex, Abdominal/physiology , Sensory Receptor Cells/pathology , Sensory Receptor Cells/physiology , Sympathetic Nervous System/pathology , Sympathetic Nervous System/physiopathology , Urinary Bladder/innervation , Urinary Bladder/pathology , Urinary Bladder, Overactive/pathology , Urination/physiology , Uroplakin II , Urothelium/innervation , Urothelium/pathology
...