Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 202(7)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31964697

RESUMEN

Listeria monocytogenes is a Gram-positive firmicute that causes foodborne infections, in part due to its ability to use multiple strategies, including biofilm formation, to survive adverse growth conditions. As a potential way to screen for genes required for biofilm formation, we harnessed the ability of bacteria to accumulate mutations in the genome over time, diverging the properties of seemingly identical strains. By sequencing the genomes of four laboratory reference strains of the commonly used L. monocytogenes EGDe, we showed that each isolate contains single nucleotide polymorphisms (SNPs) compared with the reference genome. We discovered that two SNPs, contained in two independent genes within one of the isolates, impacted biofilm formation. Using bacterial genetics and phenotypic assays, we confirmed that rsbU and rmlA influence biofilm formation. RsbU is the upstream regulator of the alternative sigma factor SigB, and mutation of either rsbU or sigB increased biofilm formation. In contrast, deletion of rmlA, which encodes the first enzyme for TDP-l-rhamnose biosynthesis, resulted in a reduction in the amount of biofilm formed. Further analysis of biofilm formation in a strain that still produces TDP-l-rhamnose but which cannot decorate the wall teichoic acid with rhamnose (rmlT mutant) showed that it is the decorated wall teichoic acid that is required for adhesion of the cells to surfaces. Together, these data uncover novel routes by which biofilm formation by L. monocytogenes can be impacted.IMPORTANCE Biofilms are an important mode of growth in many settings. Here, we looked at small differences in the genomes of the bacterium Listeria monocytogenes isolate EGDe and used them to find out how biofilms form. This important fundamental information may help new treatments to be developed and also highlights the fact that isolates of the same identity often diverge.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Pared Celular/metabolismo , Genoma Bacteriano , Genómica , Listeria monocytogenes/fisiología , Factor sigma/metabolismo , Adhesión Bacteriana , Flagelos/metabolismo , Genómica/métodos , Genotipo , Polimorfismo de Nucleótido Simple , Ramnosa/metabolismo , Secuenciación Completa del Genoma
2.
J Bacteriol ; 200(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29661863

RESUMEN

Novel preventatives could help in efforts to limit Vibrio cholerae infection and the spread of cholera. Bacteriophage (phage) treatment has been proposed as an alternative intervention, given the rapid replication of virulent phages, prey specificity, and relative ease of finding new virulent phages. Phage tropism is dictated in part by the presence of phage receptors on the bacterial surface. While many phages that can kill V. cholerae have been isolated, whether this pathogen is able to defend itself by neutralizing phage binding is unknown. Here, we show that secreted outer membrane vesicles (OMVs) act as a defense mechanism that confers protection to V. cholerae against phage predation and that this OMV-mediated inhibition is phage receptor dependent. Our results suggest that phage therapy or prophylaxis should take into consideration the production of OMVs as a bacterial decoy mechanism that could influence the outcome of phage treatment.IMPORTANCE Phages have been increasingly recognized for the significance of their interactions with bacterial cells in multiple environments. Bacteria use myriad strategies to defend against phage infection, including restriction modification, abortive infection, phase variation of cell surface receptors, phage-inducible chromosomal islands, and clustered regularly interspaced short palindromic repeat(s) (CRISPR)-Cas systems. The data presented here suggest that the apparently passive process of OMV release can also contribute to phage defense. By considering the effect of OMVs on V. cholerae infection by three unique virulent phages, ICP1, ICP2, and ICP3, we show that, in vitro, a reproducible reduction in bacterial killing is both dose and phage receptor dependent. This work supports a role for OMVs as natural decoys to defend bacteria from phage predation.


Asunto(s)
Bacteriófagos/fisiología , Membrana Celular/fisiología , Vibrio cholerae/fisiología , Vibrio cholerae/virología , Microscopía por Crioelectrón , Tomografía/métodos , Internalización del Virus
3.
Nat Commun ; 8: 14187, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146150

RESUMEN

Effective prevention strategies will be essential in reducing disease burden due to bacterial infections. Here we harness the specificity and rapid-acting properties of bacteriophages as a potential prophylaxis therapy for cholera, a severely dehydrating disease caused by Vibrio cholerae. To this end, we test a cocktail of three virulent phages in two animal models of cholera pathogenesis (infant mouse and rabbit models). Oral administration of the phages up to 24 h before V. cholerae challenge reduces colonization of the intestinal tract and prevents cholera-like diarrhea. None of the surviving V. cholerae colonies are resistant to all three phages. Genome sequencing and variant analysis of the surviving colonies indicate that resistance to the phages is largely conferred by mutations in genes required for the production of the phage receptors. For acute infections, such as cholera, phage prophylaxis could provide a strategy to limit the impact of bacterial disease on human health.


Asunto(s)
Bacteriófagos/patogenicidad , Cólera/prevención & control , Modelos Animales de Enfermedad , Vibrio cholerae/virología , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cólera/microbiología , Tracto Gastrointestinal/microbiología , Humanos , Ratones , Modelos Animales , Mutación , Conejos , Vibrio cholerae/genética , Vibrio cholerae/fisiología , Virulencia
4.
BMC Microbiol ; 15: 78, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25887289

RESUMEN

BACKGROUND: Two-component signal transduction pathways allow bacteria to sense and respond to the environment. Typically such pathways comprise a sensor histidine kinase and a response regulator. Phosphorylation of the response regulator commonly results in its activation, allowing the protein to bind to target promoter elements to regulate transcription. Several mechanisms are used to prevent inappropriate phosphorylation of the response regulator, thereby ensuring a specific response. In Bacillus subtilis, the DegS-DegU two-component system controls transcription of target genes in a manner dependent on the level of the phosphorylated response regulator, DegU. Previous work has tentatively indicated that DegU, and DegU H(12)L, a DegU variant which displays enhanced stability of the phosphoryl moiety, can be phosphorylated in the absence of the kinase, DegS. RESULTS: The data presented here reveal that DegU H(12)L requires aspartic acid 56 (D(56)), the identified DegU phosphorylation site, for its activity. By indirectly measuring the level of DegU ~ P in the cell by assessment of several well recognised DegU regulated processes it was shown that DegU H(12)L retains its activity in the absence of DegS, and that mutation of D(56) produced an inactive protein. Further experiments designed to raise the level of acetyl phosphate within the cell suggest that DegU can be phosphorylated by acetyl phosphate in the absence of degS. Additionally, the phenotypic and biochemical experiments presented indicate that DegU H(12)L can reliably mimic high levels of phosphorylated DegU. CONCLUSIONS: The ability of acetyl phosphate to modify DegU, and indeed DegU H(12)L, reveal an additional layer of regulation for DegU phosphorylation that will be relevant when the level of DegS is low or in the absence of degS. Given the number of processes that DegU can activate or inhibit, extensive regulation at a number of levels is required to ensure that the system is not inappropriately stimulated. DegS has both kinase and phosphatase activity and our findings demonstrate that the phosphatase activity of DegS is essential to control the level of DegU phosphate. Overall we contribute to our understanding of how the intricate signalling pathway DegS-DegU is regulated in B. subtilis.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Organofosfatos/metabolismo , Procesamiento Proteico-Postraduccional , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas , Transducción de Señal
5.
Mol Microbiol ; 93(4): 587-98, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24988880

RESUMEN

Biofilm formation is a social behaviour that generates favourable conditions for sustained survival in the natural environment. For the Gram-positive bacterium Bacillus subtilis the process involves the differentiation of cell fate within an isogenic population and the production of communal goods that form the biofilm matrix. Here we review recent progress in understanding the regulatory pathways that control biofilm formation and highlight developments in understanding the composition, function and structure of the biofilm matrix.


Asunto(s)
Bacillus subtilis/fisiología , Biopelículas/crecimiento & desarrollo , Matriz Extracelular/metabolismo , Regulación Bacteriana de la Expresión Génica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo
6.
Cell Signal ; 26(9): 1958-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24815749

RESUMEN

In Rat-1 cells, the dramatic decrease in the levels of both intracellular cyclic 3'5' adenosine monophosphate (cyclic AMP; cAMP) and in the activity of cAMP-activated protein kinase A (PKA) observed in mitosis was paralleled by a profound increase in cAMP hydrolyzing phosphodiesterase-4 (PDE4) activity. The decrease in PKA activity, which occurs during mitosis, was attributable to PDE4 activation as the PDE4 selective inhibitor, rolipram, but not the phosphodiesterase-3 (PDE3) inhibitor, cilostamide, specifically ablated this cell cycle-dependent effect. PDE4 inhibition caused Rat-1 cells to move from S phase into G2/M more rapidly, to transit through G2/M more quickly and to remain in G1 for a longer period. Inhibition of PDE3 elicited no observable effects on cell cycle dynamics. Selective immunopurification of each of the four PDE4 sub-families identified PDE4D as being selectively activated in mitosis. Subsequent analysis uncovered PDE4D9, an isoform whose expression can be regulated by Disrupted-In-Schizophrenia 1 (DISC1)/activating transcription factor 4 (ATF4) complex, as the sole PDE4 species activated during mitosis in Rat-1 cells. PDE4D9 becomes activated in mitosis through dual phosphorylation at Ser585 and Ser245, involving the combined action of ERK and an unidentified 'switch' kinase that has previously been shown to be activated by H2O2. Additionally, in mitosis, PDE4D9 also becomes phosphorylated at Ser67 and Ser81, through the action of MK2 (MAPKAPK2) and AMP kinase (AMPK), respectively. The multisite phosphorylation of PDE4D9 by all four of these protein kinases leads to decreased mobility (band-shift) of PDE4D9 on SDS-PAGE. PDE4D9 is predominantly concentrated in the perinuclear region of Rat-1 cells but with a fraction distributed asymmetrically at the cell margins. Our investigations demonstrate that the diminished levels of cAMP and PKA activity that characterise mitosis are due to enhanced cAMP degradation by PDE4D9. PDE4D9, was found to locate primarily not only in the perinuclear region of Rat-1 cells but also at the cell margins. We propose that the sequestration of PDE4D9 in a specific complex together with AMPK, ERK, MK2 and the H2O2-activatable 'switch' kinase allows for its selective multi-site phosphorylation, activation and regulation in mitosis.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción Activador 4/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Interfase , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Fosforilación , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas
7.
J Bacteriol ; 196(12): 2216-26, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24706744

RESUMEN

The assembly of the bacterial flagellum is exquisitely controlled. Flagellar biosynthesis is underpinned by a specialized type III secretion system that allows export of proteins from the cytoplasm to the nascent structure. Bacillus subtilis regulates flagellar assembly using both conserved and species-specific mechanisms. Here, we show that YvyG is essential for flagellar filament assembly. We define YvyG as an orthologue of the Salmonella enterica serovar Typhimurium type III secretion system chaperone, FlgN, which is required for the export of the hook-filament junction proteins, FlgK and FlgL. Deletion of flgN (yvyG) results in a nonmotile phenotype that is attributable to a decrease in hag translation and a complete lack of filament polymerization. Analyses indicate that a flgK-flgL double mutant strain phenocopies deletion of flgN and that overexpression of flgK-flgL cannot complement the motility defect of a ΔflgN strain. Furthermore, in contrast to previous work suggesting that phosphorylation of FlgN alters its subcellular localization, we show that mutation of the identified tyrosine and arginine FlgN phosphorylation sites has no effect on motility. These data emphasize that flagellar biosynthesis is differentially regulated in B. subtilis from classically studied Gram-negative flagellar systems and questions the biological relevance of some posttranslational modifications identified by global proteomic approaches.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Flagelos/fisiología , Secuencia de Aminoácidos , Bacillus subtilis/citología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Movimiento , Mutación
8.
Microbiology (Reading) ; 160(Pt 1): 56-66, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24149708

RESUMEN

Biofilm formation by the Gram-positive bacterium Bacillus subtilis is tightly controlled at the level of transcription. The biofilm contains specialized cell types that arise from controlled differentiation of the resident isogenic bacteria. DegU is a response regulator that controls several social behaviours exhibited by B. subtilis including swarming motility, biofilm formation and extracellular protease (exoprotease) production. Here, for the first time, we examine the prevalence and origin of exoprotease-producing cells within the biofilm. This was accomplished using single-cell analysis techniques including flow cytometry and fluorescence microscopy. We established that the number of exoprotease-producing cells increases as the biofilm matures. This is reflected by both an increase at the level of transcription and an increase in exoprotease activity over time. We go on to demonstrate that exoprotease-producing cells arise from more than one cell type, namely matrix-producing and non-matrix-producing cells. In toto these findings allow us to add exoprotease-producing cells to the list of specialized cell types that are derived during B. subtilis biofilm formation and furthermore the data highlight the plasticity in the origin of differentiated cells.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/fisiología , Biopelículas/crecimiento & desarrollo , Exopeptidasas/metabolismo , Citometría de Flujo , Microscopía Fluorescente
9.
Mol Microbiol ; 90(1): 6-21, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23888912

RESUMEN

In the natural environment bacteria predominantly live adhered to a surface as part of a biofilm. While many of the components needed for biofilm assembly are known, the mechanism by which microbes sense and respond to contact with a surface is poorly understood. Bacillus subtilis is a Gram-positive model for biofilm formation. The DegS-DegU two-component system controls several multicellular behaviours in B. subtilis, including biofilm formation. Here we identify the B. subtilis flagellum as a mechanosensor that activates the DegS-DegU regulatory pathway. Inhibition of flagellar rotation by deletion or mutation of the flagellar stator gene, motB, results in an increase in both degU transcription and DegU∼P driven processes, namely exoprotease production and poly-γ-dl-glutamic acid biosynthesis. Similarly, inhibition of flagellar rotation by engaging the flagellar clutch or by tethering the flagella with antibodies also promotes an increase in degU transcription that is reflective of increased DegU∼P levels in the cell. Collectively, these findings strongly indicate that inhibition of flagellar rotation acts as a mechanical trigger to activate the DegS-DegU two-component signal transduction system. We postulate that inhibition of flagellar rotation could function as a mechanical trigger to activate bacterial signal transduction cascades in many motile bacteria upon contact with a surface.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Transducción de Señal , Proteínas Bacterianas/genética , Locomoción
10.
Endocrinology ; 153(7): 3054-65, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22685263

RESUMEN

The intestine secretes a range of hormones with important local and distant actions, including the control of insulin secretion and appetite. A number of enteroendocrine cell types have been described, each characterized by a distinct hormonal signature, such as K-cells producing glucose-dependent insulinotropic polypeptide (GIP), L-cells producing glucagon-like peptide-1 (GLP-1), and I-cells producing cholecystokinin (CCK). To evaluate similarities between L-, K-, and other enteroendocrine cells, primary murine L- and K-cells, and pancreatic α- and ß-cells, were purified and analyzed by flow cytometry and microarray-based transcriptomics. By microarray expression profiling, L cells from the upper small intestinal (SI) more closely resembled upper SI K-cells than colonic L-cells. Upper SI L-cell populations expressed message for hormones classically localized to different enteroendocrine cell types, including GIP, CCK, secretin, and neurotensin. By immunostaining and fluorescence-activated cell sorting analysis, most colonic L-cells contained GLP-1 and PeptideYY In the upper SI, most L-cells contained CCK, approximately 10% were GIP positive, and about 20% were PeptideYY positive. Upper SI K-cells exhibited approximately 10% overlap with GLP-1 and 6% overlap with somatostatin. Enteroendocrine-specific transcription factors were identified from the microarrays, of which very few differed between the enteroendocrine cell populations. Etv1, Prox1, and Pax4 were significantly enriched in L-cells vs. K cells by quantitative RT-PCR. In summary, our data indicate a strong overlap between upper SI L-, K-, and I-cells and suggest they may rather comprise a single cell type, within which individual cells exhibit a hormonal spectrum that may reflect factors such as location along the intestine and exposure to dietary nutrients.


Asunto(s)
Células Enteroendocrinas/citología , Citometría de Flujo/métodos , Perfilación de la Expresión Génica , Mucosa Intestinal/metabolismo , Intestinos/citología , Animales , Separación Celular , Colecistoquinina/metabolismo , Cromogranina A/metabolismo , Intestino Delgado/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptidos/química , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...