Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(1): 108685, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38155772

RESUMEN

Plans for decarbonized electricity systems rely on projections of highly uncertain future technology costs. We use a stylized model to investigate the influence of future cost uncertainty, as represented by different projections in the National Renewable Energy Laboratory 2021 Annual Technology Baseline dataset, on technology mixes comprising least-cost decarbonized electricity systems. Our analysis shows that given the level of future cost uncertainty as represented by these projections, it is not possible to predict with confidence which technologies will play a dominant role in future least-cost carbon emission-free energy systems. Successful efforts to reduce costs of individual technologies may or may not lead to system cost reductions and widespread deployments, depending on the success of cost-reduction efforts for competing and complementary technologies. These results suggest a portfolio approach to reducing technology costs. Reliance on uncertain cost breakthroughs risks costly outcomes. Iterative decision-making with learning can help mitigate these risks.

2.
Nat Commun ; 14(1): 5532, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684237

RESUMEN

Proposals for achieving net-zero emissions by 2050 include scaling-up electrolytic hydrogen production, however, this poses technical, economic, and environmental challenges. One such challenge is for policymakers to ensure a sustainable future for the environment including freshwater and land resources while facilitating low-carbon hydrogen production using renewable wind and solar energy. We establish a country-by-country reference scenario for hydrogen demand in 2050 and compare it with land and water availability. Our analysis highlights countries that will be constrained by domestic natural resources to achieve electrolytic hydrogen self-sufficiency in a net-zero target. Depending on land allocation for the installation of solar panels or wind turbines, less than 50% of hydrogen demand in 2050 could be met through a local production without land or water scarcity. Our findings identify potential importers and exporters of hydrogen or, conversely, exporters or importers of industries that would rely on electrolytic hydrogen. The abundance of land and water resources in Southern and Central-East Africa, West Africa, South America, Canada, and Australia make these countries potential leaders in hydrogen export.

3.
iScience ; 25(9): 104906, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36060055

RESUMEN

We employed an idealized macro-energy system model to examine how the value of unidirectionally- and bidirectionally-charging electric vehicles (EVs) varies with EV penetration and mix of electricity generators. We find that EVs can help wind and solar-based electricity generation systems to be less costly by making better use of power that would otherwise be curtailed and, potentially, by giving electricity back to the grid at times of peak net load. At low levels of EV penetration, bidirectional EVs are valuable because they can provide electricity at times of main load peak. At today's low levels of EV penetration, bidirectional EVs stimulate investments in solar and wind generation and substantially reduce the need for grid-battery storage compared to unidirectional EVs. At high levels of EV penetration, generation capacity must be increased, and most peaks in main net load demand can be met by reductions in charging by unidirectional EVs.

4.
iScience ; 25(4): 104140, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35434557

RESUMEN

Wind and solar photovoltaic generators are projected to play important roles in achieving a net-zero-carbon electricity system that meets current and future energy needs. Here, we show potential advantages of long-term site planning of wind and solar power plants in deeply decarbonized electricity systems using a macro-scale energy model. With weak carbon emission constraints and substantial amounts of flexible electricity sources on the grid (e.g., dispatchable power), relatively high value is placed on sites with high capacity factors because the added wind or solar capacity can efficiently substitute for running natural gas power plants. With strict carbon emission constraints, relatively high value is placed on sites with high correlation with residual demand because resource complementarity can efficiently compensate for lower system flexibility. Our results suggest that decisions regarding long-term wind and solar farm siting may benefit from consideration of the spatial and temporal evolution of mismatches in electricity demand and generation capacity.

5.
iScience ; 25(4): 104108, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378859

RESUMEN

Solar photovoltaics, with sufficient power generation potential, low-carbon footprint, and rapidly declining costs, could supplant fossil fuels and help produce lower-cost net-zero emissions energy systems. Here we used an idealized linear optimization model, including free lossless transmission, to study the response of electricity systems to increasing prescribed amounts of solar power. Our results show that there are initially great benefits when providing solar power to the system, especially under deep decarbonization scenarios. The marginal value of additional solar power decreases substantially with increasing cumulative solar capacities. At costs near today's levels, the modeled zero-emission electricity system with free solar generation equaling twice the annual mean demand is more costly than a carbon-emitting natural-gas-based system supplying the same electricity demand with no solar. Taking full advantage of low-cost solar will depend on developing and deploying low-cost approaches to temporally shift either energy supply (e.g., storage) or electricity loads (e.g., load-shifting).

6.
iScience ; 25(3): 103926, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243266

RESUMEN

We employed a bottom-up modeling framework to examine a set of scenarios to generate insights on the techno-economic and environmental implications of increasing levels of electric vehicle (EV) penetration using Nigeria as a case study. Results indicate that, despite Nigeria having a natural gas-dominated electricity system, the deployment of EVs can support the decarbonization of the transportation and power sectors but at a relatively high cost. The cost of EVs would need to drop by ∼40% to become cost-competitive. However, if variable renewable energy sources deliver the EVs power requirement with a bidirectional vehicle-to-grid (V2G) charging strategy, then the cost of EVs would need to decline by only ∼30%. Not all EVs need to participate in a V2G charging strategy in order to realize the full benefits of the strategy. Expanding renewables capacity leads to additional reduction in CO2 emission and decarbonization cost but at different magnitudes based on the charging strategy.

7.
Nat Commun ; 12(1): 6146, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686663

RESUMEN

If future net-zero emissions energy systems rely heavily on solar and wind resources, spatial and temporal mismatches between resource availability and electricity demand may challenge system reliability. Using 39 years of hourly reanalysis data (1980-2018), we analyze the ability of solar and wind resources to meet electricity demand in 42 countries, varying the hypothetical scale and mix of renewable generation as well as energy storage capacity. Assuming perfect transmission and annual generation equal to annual demand, but no energy storage, we find the most reliable renewable electricity systems are wind-heavy and satisfy countries' electricity demand in 72-91% of hours (83-94% by adding 12 h of storage). Yet even in systems which meet >90% of demand, hundreds of hours of unmet demand may occur annually. Our analysis helps quantify the power, energy, and utilization rates of additional energy storage, demand management, or curtailment, as well as the benefits of regional aggregation.

8.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183400

RESUMEN

When wind turbines are arranged in clusters, their performance is mutually affected, and their energy generation is reduced relative to what it would be if they were widely separated. Land-area power densities of small wind farms can exceed 10 W/m2, and wakes are several rotor diameters in length. In contrast, large-scale wind farms have an upper-limit power density in the order of 1 W/m2 and wakes that can extend several tens of kilometers. Here, we address two important questions: 1) How large can a wind farm be before its generation reaches energy replenishment limits and 2) How far apart must large wind farms be spaced to avoid inter-wind-farm interference? We characterize controls on these spatial and temporal scales by running a set of idealized atmospheric simulations using the Weather and Research Forecasting model. Power generation and wind speed within and over the wind farm show that a timescale inversely proportional to the Coriolis parameter governs such transition, and the corresponding length scale is obtained by multiplying the timescale by the geostrophic wind speed. A geostrophic wind of 8 m/s and a Coriolis parameter of 1.05 × 10-4 rad/s (latitude of ∼46°) would give a transitional scale of about 30 km. Wind farms smaller than this result in greater power densities and shorter wakes. Larger wind farms result instead in power densities that asymptotically reach their minimum and wakes that reach their maximum extent.

9.
Nature ; 593(7859): 341, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34007074
10.
Environ Sci Technol ; 55(9): 6214-6226, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33822592

RESUMEN

As reliance on wind and solar power for electricity generation increases, so does the importance of understanding how variability in these resources affects the feasible, cost-effective ways of supplying energy services. We use hourly weather data over multiple decades and historical electricity demand data to analyze the gaps between wind and solar supply and electricity demand for California (CA) and the Western Interconnect (WECC). We quantify the occurrence of resource droughts when the daily power from each resource was less than half of the 39-year daily mean for that day of the year. Averaged over 39 years, CA experienced 6.6 days of solar and 48 days of wind drought per year, compared to 0.41 and 19 for WECC. Using a macro-scale electricity model, we evaluate the potential for both long-term storage and more geographically diverse generation resources to minimize system costs. For wind-solar-battery electricity systems, meeting California demand with WECC generation resources reduces the cost by 9% compared to constraining resources entirely to California. Adding long-duration storage lowers system costs by 21% when treating California as an island. This data-driven analysis quantifies rare weather-related events and provides an understanding that can be used to inform stakeholders in future electricity systems.


Asunto(s)
Energía Solar , Viento , California , Sequías , Electricidad , Energía Renovable
11.
iScience ; 23(9): 101484, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32927261

RESUMEN

We use 36 years (1980-2015) of hourly weather data over the contiguous United States (CONUS) to assess the impact of low-cost energy storage on highly reliable electricity systems that use only variable renewable energy (VRE; wind and solar photovoltaics). Even assuming perfect transmission of wind and solar generation aggregated over CONUS, energy storage costs would need to decrease several hundred-fold from current costs (to ∼$1/kWh) in fully VRE electricity systems to yield highly reliable electricity without extensive curtailment of VRE generation. The role of energy storage changes from high-cost storage competing with curtailment to fill short-term gaps between VRE generation and hourly demand to near-free storage serving as seasonal storage for VRE resources. Energy storage faces "double penalties" in VRE/storage systems: with increasing capacity, (1) the additional storage is used less frequently and (2) hourly electricity costs would become less volatile, thus reducing price arbitrage opportunities for the additional storage.

12.
Sci Data ; 7(1): 155, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457368

RESUMEN

Electricity usage (demand) data are used by utilities, governments, and academics to model electric grids for a variety of planning (e.g., capacity expansion and system operation) purposes. The U.S. Energy Information Administration collects hourly demand data from all balancing authorities (BAs) in the contiguous United States. As of September 2019, we find 2.2% of the demand data in their database are missing. Additionally, 0.5% of reported quantities are either negative values or are otherwise identified as outliers. With the goal of attaining non-missing, continuous, and physically plausible demand data to facilitate analysis, we developed a screening process to identify anomalous values. We then applied a Multiple Imputation by Chained Equations (MICE) technique to impute replacements for missing and anomalous values. We conduct cross-validation on the MICE technique by marking subsets of plausible data as missing, and using the remaining data to predict this "missing" data. The mean absolute percentage error of imputed values is 3.5% across all BAs. The cleaned data are published and available open access: https://doi.org/10.5281/zenodo.3690240.

13.
Sci Total Environ ; 719: 137334, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32135325

RESUMEN

Hypoxia, a condition of low dissolved oxygen concentration, is a widespread problem in marine and freshwater ecosystems. To date, prevention and mitigation of hypoxia has centered on nutrient reduction to prevent eutrophication. However, nutrient reduction is often slow and sometimes insufficient to remedy hypoxia. We investigate the utility of a complementary strategy of pumping oxygenated surface water to depth, termed induced downwelling, as a technique to remedy hypoxia in the bottom water of marine and freshwater ecosystems. We introduce simple energy-based models and apply them to depth profiles in hypoxic estuaries, lakes, and freshwater reservoirs. Our models indicate that induced downwelling may be ~3 to 102 times more efficient than bubbling air, and 104 to 106 times more efficient than fountain aerators, at oxygenating hypoxic bottom waters. A proof-of-concept downwelling field experiment highlighted potential advantages and shortcomings. We estimate that regional-scale downwelling for continual hypoxia avoidance would require 0.4 to 4 megawatts per cubic kilometer of water (depending on local conditions), or 50 to 500 US dollars per hour per cubic kilometer of water (assuming 125 USD MWh-1 of electricity). Many potential side effects of downwelling are discussed, each of which would need to be explored and assessed before implementation. Downwelling does not replace nutrient management strategies, but under some circumstances may provide an efficient means to augment these strategies.

14.
Sci Total Environ ; 723: 138003, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32217382

RESUMEN

Understanding the extent to which laboratory findings of low pH on marine organisms can be extrapolated to the natural environment is key toward making better projections about the impacts of global change on marine ecosystems. We simultaneously exposed larvae of the sea urchin Arbacia lixula to ocean acidification in laboratory and natural CO2 vents and assessed the arm growth response as a proxy of net calcification. Populations of embryos were simultaneously placed at both control and volcanic CO2 vent sites in Ischia (Italy), with a parallel group maintained in the laboratory in control and low pH treatments corresponding to the mean pH levels of the field sites. As expected, larvae grown at constant low pH (pHT 7.8) in the laboratory exhibited reduced arm growth, but counter to expectations, the larvae that developed at the low pH vent site (pHT 7.33-7.99) had the longest arms. The larvae at the control field site (pHT 7.87-7.99) grew at a similar rate to laboratory controls. Salinity, temperature, oxygen and flow regimes were comparable between control and vent sites; however, chlorophyll a levels and particulate organic carbon were higher at the vent site than at the control field site. This increased food availability may have modulated the effects of low pH, creating an opposite calcification response in the laboratory from that in the field. Divergent responses of the same larval populations developing in laboratory and field environments show the importance of considering larval phenotypic plasticity and the complex interactions among decreased pH, food availability and larval responses.


Asunto(s)
Ecosistema , Agua de Mar , Animales , Dióxido de Carbono/análisis , Clorofila A , Concentración de Iones de Hidrógeno , Italia , Larva , Océanos y Mares , Erizos de Mar
15.
Nat Ecol Evol ; 3(10): 1438-1444, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31558830

RESUMEN

Climate change is causing major changes to marine ecosystems globally, with ocean acidification of particular concern for coral reefs. Using a 200 d in situ carbon dioxide enrichment study on Heron Island, Australia, we simulated future ocean acidification conditions, and found reduced pH led to a drastic decline in net calcification of living corals to no net growth, and accelerated disintegration of dead corals. Net calcification declined more severely than in previous studies due to exposure to the natural community of bioeroding organisms in this in situ study and to a longer experimental duration. Our data suggest that reef flat corals reach net dissolution at an aragonite saturation state (ΩAR) of 2.3 (95% confidence interval: 1.8-2.8) with 100% living coral cover and at ΩAR > 3.5 with 30% living coral cover. This model suggests that areas of the reef with relatively low coral mortality, where living coral cover is high, are likely to be resistant to carbon dioxide-induced reef dissolution.


Asunto(s)
Antozoos , Animales , Australia , Ecosistema , Concentración de Iones de Hidrógeno , Agua de Mar , Solubilidad
16.
Nature ; 572(7769): 373-377, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31261374

RESUMEN

Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1-5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions6-13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170-1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.


Asunto(s)
Dióxido de Carbono/análisis , Electricidad , Combustibles Fósiles/provisión & distribución , Calentamiento Global/prevención & control , Objetivos , Cooperación Internacional/legislación & jurisprudencia , Temperatura , Atmósfera/química , Combustibles Fósiles/economía , Calentamiento Global/economía , Gas Natural/provisión & distribución
17.
Environ Pollut ; 249: 512-517, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30928523

RESUMEN

Microplastics are emerging contaminants in the marine environment. They enter the ocean in a variety of sizes and shapes, with plastic microfiber being the prevalent form in seawater and in the guts of biota. Most of the laboratory experiments on microplastics has been performed with spheres, so knowledge on the interactions of microfibers and marine organisms is limited. In this study we examined the ingestion of microfibers by the sea anemone Aiptasia pallida using three different types of polymers: nylon, polyester and polypropylene. The polymers were offered to both symbiotic (with algal symbionts) and bleached (without algal symbionts) anemones. The polymers were introduced either alone or mixed with brine shrimp homogenate. We observed a higher percentage of nylon ingestion compared to the other polymers when plastic was offered in the absence of shrimp. In contrast, we observed over 80% of the anemones taking up all types of polymers when the plastics were offered in the presence of shrimp. Retention time differed significantly between symbiotic and bleached anemones with faster egestion in symbiotic anemones. Our results suggest that ingestion of microfibers by sea anemones is dependent both on the type of polymers and on the presence of chemical cues of prey in seawater. The decreased ability of bleached anemones to reject plastic microfiber indicates that the susceptibility of anthozoans to plastic pollution is exacerbated by previous exposure to other stressors. This is particularly concerning given that coral reef ecosystems are facing increases in the frequency and intensity of bleaching events due to ocean warming.


Asunto(s)
Artemia/metabolismo , Nanoestructuras/toxicidad , Plásticos/toxicidad , Anémonas de Mar/fisiología , Contaminantes del Agua/análisis , Contaminantes del Agua/metabolismo , Animales , Arrecifes de Coral , Ecosistema , Nylons/toxicidad , Poliésteres/toxicidad , Polipropilenos/toxicidad , Contaminación del Agua/análisis
18.
19.
Nature ; 563(7729): E1-E3, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30382203
20.
Nat Commun ; 9(1): 3289, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120243

RESUMEN

The distribution of anthropogenic aerosols' climate effects depends on the geographic distribution of the aerosols themselves. Yet many scientific and policy discussions ignore the role of emission location when evaluating aerosols' climate impacts. Here, we present new climate model results demonstrating divergent climate responses to a fixed amount and composition of aerosol-emulating China's present-day emissions-emitted from 8 key geopolitical regions. The aerosols' global-mean cooling effect is fourteen times greater when emitted from the highest impact emitting region (Western Europe) than from the lowest (India). Further, radiative forcing, a widely used climate response proxy, fails as an effective predictor of global-mean cooling for national-scale aerosol emissions in our simulations; global-mean forcing-to-cooling efficacy differs fivefold depending on emitting region. This suggests that climate accounting should differentiate between aerosols emitted from different countries and that aerosol emissions' evolving geographic distribution will impact the global-scale magnitude and spatial distribution of climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...