Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e33055, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021938

RESUMEN

The research community has conducted several controlled "in -lab" assessments on the effectiveness of industrial exoskeletons, paving the way for their adoption. However, field testing, focusing on ergonomics and the user experience, could serve to enhance both end-users' awareness and address open doubts concerning true effectiveness of industrial exoskeletons. This study presents an analysis of qualitative data regarding the use of back-support exoskeletons during field trials in harsh civil engineering environments. This work evaluates the StreamEXO's (an active back-support exoskeleton) efficacy in reducing fatigue and the evolution of its perceived usefulness. This is achieved using qualitative data collection tools, during real scenarios testing over multiple-day trials. Collected data shows a positive correlation between self-reported fatigue, measured on a four verbal anchors-based Borg CR10 scale, and the use of the exoskeleton during physically demanding movements. Moreover, the evolution of scores throughout the testing sessions (90 minutes of exoskeleton use for three nonconsecutive days) suggests a trend due to the adaptation and learning curve of workers during the exoskeleton experience. The analysis of the open-ended answers highlights that the adaptation to physical interaction has a negative oscillation on day two to rise back during the third day, possibly correlated to a change in muscle pattern. The main critical factors affecting comfort during the exoskeleton experience are weight balance, body pressure, and thermal comfort, which can strongly affect device acceptance.

2.
Appl Ergon ; 118: 104278, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626669

RESUMEN

Commonly used risk indexes, such as the NIOSH Lifting Index, do not capture the effect of exoskeletons. This makes it difficult for Health and Safety professionals to rigorously assess the benefit of such devices. The community requires a simple method to assess the effectiveness of back-support exoskeleton's (BSE) in possibly reducing ergonomic risk. The method introduced in this work is termed "Equivalent Weight" (EqW) and it proposes an interpretation of the effect built on the benefit delivered through reduced activation of the erector spinae (ES). This manifests itself as an apparent reduction of the lifted load perceived by the wearer. This work presents a pilot study where a practical application of the EqW method is used to assess the ergonomic risk in manual material handling (MMH) when using a back support exoskeleton (StreamEXO). The results are assessed by combining observational measurements from on-site testing with five different workers and quantitative measures of the muscle activity reduction achieved during laboratory evaluation with ten workers. These results will show that when lifting, lowering, and carrying a 19 kg load the StreamEXO can reduce risk by up to two levels (from "high" to "low") in the target sub-tasks. The Lifting index (LI) was reduced up to 64% when examining specific sub-tasks and the worker's movement conduction.


Asunto(s)
Electromiografía , Ergonomía , Dispositivo Exoesqueleto , Elevación , Vías Férreas , Análisis y Desempeño de Tareas , Soporte de Peso , Humanos , Masculino , Proyectos Piloto , Adulto , Soporte de Peso/fisiología , Ergonomía/métodos , Músculos de la Espalda/fisiología , Femenino , Medición de Riesgo/métodos , Persona de Mediana Edad
4.
Bioengineering (Basel) ; 11(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391658

RESUMEN

This study on occupational back-support exoskeletons performs a laboratory evaluation of realistic tasks with expert workers from the railway sector. Workers performed both a static task and a dynamic task, each involving manual material handling (MMH) and manipulating loads of 20 kg, in three conditions: without an exoskeleton, with a commercially available passive exoskeleton (Laevo v2.56), and with the StreamEXO, an active back-support exoskeleton developed by our institute. Two control strategies were defined, one for dynamic tasks and one for static tasks, with the latter determining the upper body's gravity compensation through the Model-based Gravity Compensation (MB-Grav) approach. This work presents a comparative assessment of the performance of active back support exoskeletons versus passive exoskeletons when trialled in relevant and realistic tasks. After a lab characterization of the MB-Grav strategy, the experimental assessment compared two back-support exoskeletons, one active and one passive. The results showed that while both devices were able to reduce back muscle activation, the benefits of the active device were triple those of the passive system regarding back muscle activation (26% and 33% against 9% and 11%, respectively), while the passive exoskeleton hindered trunk mobility more than the active mechanism.

5.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941236

RESUMEN

Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying. A control strategy is designed that modulates the exoskeleton torques to comply with the task assistance requirements. In particular, two gait phase detection frameworks are exploited to adapt the exoskeleton assistance according to the legs' motion. The control strategy is assessed through an experimental analysis on ten subjects. Carrying task is performed without and with the exoskeleton assistance. Results prove the potential of the presented control in assisting the task without hindering the gait movement and improving the usability experienced by users. Moreover, the exoskeleton assistance significantly reduces the lumbar load associated with the task, demonstrating its promising use for risk mitigation in the workplace.


Asunto(s)
Dispositivo Exoesqueleto , Dolor de la Región Lumbar , Humanos , Marcha , Pierna , Región Lumbosacra , Fenómenos Biomecánicos , Electromiografía
6.
ISA Trans ; 142: 360-371, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37673731

RESUMEN

Robotic manipulators provide advantages in working environments regarding efficiency and safety, which is further increased in the case of elastic joint manipulators, whose mechanical compliance reduces the energy involved in collisions with workers. Cable-driven manipulators are elastic joint manipulators particularly suitable for industrial inspection thanks to the relocation of actuators outside hostile environments, increasing the manipulator payload-to-weight ratio. Recently, synthetic fibre cables are substituting steel cables due to their better-performing mechanical properties, but their visco-elastic behaviour must be compensated in the controller design. The key novelty of this work is using the four elements model, which includes the viscous behaviour, to design a non-linear full-state feedback controller for cable-driven manipulators. Furthermore, the mathematical proof of the closed-loop Lyapunov stability is provided.

7.
Front Robot AI ; 10: 1211531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680761

RESUMEN

Inertial Measurement Units are present in several applications in aerospace, unmanned vehicle navigation, legged robots, and human motion tracking systems, due to their ability to estimate a body's acceleration, orientation and angular rate. In contrast to rovers and drones, legged locomotion involves repeated impacts between the feet and the ground, and rapid locomotion (e.g., running) involves alternating stance and flight phases, resulting in substantial oscillations in vertical acceleration. The aim of this research is to investigate the effects of periodic low-acceleration impacts (4 g, 8 g and 16 g), which imitate the vertical motion of a running robot, on the attitude estimation of multiple Micro-Electromechanical Systems IMUs. The results reveal the presence of a significant drift in the attitude estimation of the sensors, which can provide important information during the design process of a robot (sensor selection), or during the control phase (e.g., the system will know that after a series of impacts the attitude estimations will be inaccurate).

8.
Front Neurorobot ; 17: 1168213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37501781

RESUMEN

Musculoskeletal Disorders associated with the elbow are one of the most common forms of work-related injuries. Exoskeletons have been proposed as an approach to reduce and ideally eliminate these injuries; however, exoskeletons introduce their own problems, especially discomfort due to joint misalignment. The Elbow-sideWINDER with its associated control strategy is a novel elbow exoskeleton to assist elbow flexion/extension during occupational tasks. This study describes the exoskeleton showing how this can minimize discomfort caused by joint misalignment, maximize assistive performance, and provide increased robustness and reliability in real worksites. The proposed medium-level control strategy can provide effective assistive torque using three control units as follows: an arm kinematics estimator, a load estimator, and a friction compensator. The combined hardware/software system of the Elbow-sideWINDER is tested in load-lifting tasks (2 and 7 kg). This experiment focuses on the reduction in the activation level of the biceps brachii and triceps brachii in both arms and the change in the range of motion of the elbow during the task. It is shown that using the Elbow-sideWINDER, the biceps brachii, responsible for the elbow flexion, was significantly less activated (up to 38.8% at 2 kg and 25.7% at 7 kg, on average for both arms). For the triceps brachii, the muscle activation was reduced by up to 37.0% at 2 kg and 35.1% at 7 kg, on average for both arms. When wearing the exoskeleton, the range of motion of the elbow was reduced by up to 13.0° during the task, but it was within a safe range and could be compensated for by other joints such as the waist or knees. There are extremely encouraging results that provide good indicators and important clues for future improvement of the Elbow-sideWINDER and its control strategy.

9.
Front Neurorobot ; 17: 1127694, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250670

RESUMEN

Wearable robots are becoming a valuable solution that helps injured, and elderly people regain mobility and improve clinical outcomes by speeding up the rehabilitation process. The XoSoft exosuit identified several benefits, including improvement of assistance, usability, and acceptance with a soft, modular, bio-mimetic, and quasi-passive exoskeleton. This study compares two assistive configurations: (i) a bilateral hip flexion (HA, hips-assistance) and (ii) a bilateral hip flexion combined with ankle plantarflexion (HAA, hips-ankles-assistance) with the main goal of evaluating compensatory actions and synergetic effects generated by the human- exoskeleton interaction. A complete description of this complex interaction scenario with this actuated exosuit is evaluated during a treadmill walking task, using several indices to quantify the human-robot interaction in terms of muscular activation and fatigue, metabolic expenditure, and kinematic motion patterns. Evidence shows that the HAA biomimetic controller is synergetic with the musculature and performs better concerning the other control strategy. The experimentation demonstrated a metabolic expenditure reduction of 8% of Metabolic Equivalent of Task (MET), effective assistance of the muscular activation of 12.5%, a decrease of the muscular fatigue of 0.6% of the mean frequency, and a significant reduction of the compensatory actions, as discussed in this work. Compensatory effects are present in both assistive configurations, but the HAA modality provides a 47% reduction of compensatory effects when considering muscle activation.

10.
Bioengineering (Basel) ; 11(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38247891

RESUMEN

Work-related musculoskeletal disorders are globally one of the leading causes of work-related injuries. They significantly impact worker health and business costs. Work task ergonomic risk indices have been developed that use observational assessments to identify potential injuries, and allow safety managers to promptly intervene to mitigate the risks. However, these assessments are very subjective and difficult to perform in real time. This work provides a technique that can digitalize this process by developing an online algorithm to calculate the NIOSH index and provide additional data for ergonomic risk assessment. The method is based on the use of inertial sensors, which are easily found commercially and can be integrated into the industrial environment without any other sensing technology. This preliminary study demonstrates the effectiveness of the first version of the Online Lifting Index (On-LI) algorithm on a common industrial logistic task. The effectiveness is compared to the standard ergonomic assessment method. The results report an average error of 3.6% compared to the NIOSH parameters used to calculate the ergonomic risk and a relative error of the Lifting Index of 2.8% when compared to observational methods.

11.
Front Neurorobot ; 16: 982950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386390

RESUMEN

During the development and assessment of an exoskeleton, many different analyzes need to be performed. The most frequently used evaluate the changes in muscle activations, metabolic consumption, kinematics, and kinetics. Since human-exoskeleton interactions are based on the exchange of forces and torques, the latter of these, kinetic analyzes, are essential and provide indispensable evaluation indices. Kinetic analyzes, however, require access to, and use of, complex experimental apparatus, involving many instruments and implicating lengthy data analysis processes. The proposed methodology in this paper, which is based on data collected via EMG and motion capture systems, considerably reduces this burden by calculating kinetic parameters, such as torque and power, without needing ground reaction force measurements. This considerably reduces the number of instruments used, allows the calculation of kinetic parameters even when the use of force sensors is problematic, does not need any dedicated software, and will be shown to have high statistical validity. The method, in fact, combines data found in the literature with those collected in the laboratory, allowing the analysis to be carried out over a much greater number of cycles than would normally be collected with force plates, thus enabling easy access to statistical analysis. This new approach evaluates the kinetic effects of the exoskeleton with respect to changes induced in the user's kinematics and muscular activation patterns and provides indices that quantify the assistance in terms of torque (AMI) and power (API). Following the User-Center Design approach, which requires driving the development process as feedback from the assessment process, this aspect is critical. Therefore, by enabling easy access to the assessment process, the development of exoskeletons could be positively affected.

12.
Front Robot AI ; 9: 1067502, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714802

RESUMEN

Reinforcement Learning has been shown to have a great potential for robotics. It demonstrated the capability to solve complex manipulation and locomotion tasks, even by learning end-to-end policies that operate directly on visual input, removing the need for custom perception systems. However, for practical robotics applications, its scarce sample efficiency, the need for huge amounts of resources, data, and computation time can be an insurmountable obstacle. One potential solution to this sample efficiency issue is the use of simulated environments. However, the discrepancy in visual and physical characteristics between reality and simulation, namely the sim-to-real gap, often significantly reduces the real-world performance of policies trained within a simulator. In this work we propose a sim-to-real technique that trains a Soft-Actor Critic agent together with a decoupled feature extractor and a latent-space dynamics model. The decoupled nature of the method allows to independently perform the sim-to-real transfer of feature extractor and control policy, and the presence of the dynamics model acts as a constraint on the latent representation when finetuning the feature extractor on real-world data. We show how this architecture can allow the transfer of a trained agent from simulation to reality without retraining or finetuning the control policy, but using real-world data only for adapting the feature extractor. By avoiding training the control policy in the real domain we overcome the need to apply Reinforcement Learning on real-world data, instead, we only focus on the unsupervised training of the feature extractor, considerably reducing real-world experience collection requirements. We evaluate the method on sim-to-sim and sim-to-real transfer of a policy for table-top robotic object pushing. We demonstrate how the method is capable of adapting to considerable variations in the task observations, such as changes in point-of-view, colors, and lighting, all while substantially reducing the training time with respect to policies trained directly in the real.

13.
Front Robot AI ; 8: 664655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568434

RESUMEN

Laser microsurgery is the current gold standard surgical technique for the treatment of selected diseases in delicate organs such as the larynx. However, the operations require large surgical expertise and dexterity, and face significant limitations imposed by available technology, such as the requirement for direct line of sight to the surgical field, restricted access, and direct manual control of the surgical instruments. To change this status quo, the European project µRALP pioneered research towards a complete redesign of current laser microsurgery systems, focusing on the development of robotic micro-technologies to enable endoscopic operations. This has fostered awareness and interest in this field, which presents a unique set of needs, requirements and constraints, leading to research and technological developments beyond µRALP and its research consortium. This paper reviews the achievements and key contributions of such research, providing an overview of the current state of the art in robot-assisted endoscopic laser microsurgery. The primary target application considered is phonomicrosurgery, which is a representative use case involving highly challenging microsurgical techniques for the treatment of glottic diseases. The paper starts by presenting the motivations and rationale for endoscopic laser microsurgery, which leads to the introduction of robotics as an enabling technology for improved surgical field accessibility, visualization and management. Then, research goals, achievements, and current state of different technologies that can build-up to an effective robotic system for endoscopic laser microsurgery are presented. This includes research in micro-robotic laser steering, flexible robotic endoscopes, augmented imaging, assistive surgeon-robot interfaces, and cognitive surgical systems. Innovations in each of these areas are shown to provide sizable progress towards more precise, safer and higher quality endoscopic laser microsurgeries. Yet, major impact is really expected from the full integration of such individual contributions into a complete clinical surgical robotic system, as illustrated in the end of this paper with a description of preliminary cadaver trials conducted with the integrated µRALP system. Overall, the contribution of this paper lays in outlining the current state of the art and open challenges in the area of robot-assisted endoscopic laser microsurgery, which has important clinical applications even beyond laryngology.

14.
Int J Rob Res ; 40(2-3): 624-650, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33994629

RESUMEN

Body posture influences human and robot performance in manipulation tasks, as appropriate poses facilitate motion or the exertion of force along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control, and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or applying a specific force. In this context, this article presents a novel manipulability transfer framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive-definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.

15.
Artículo en Inglés | MEDLINE | ID: mdl-33799947

RESUMEN

Occupational exoskeletons are becoming a concrete solution to mitigate work-related musculoskeletal disorders associated with manual material handling activities. The rationale behind this study is to search for common ground for exoskeleton evaluators to engage in dialogue with corporate Health & Safety professionals while integrating exoskeletons with their workers. This study suggests an innovative interpretation of the effect of a lower-back assistive exoskeleton and related performances that are built on the benefit delivered through reduced activation of the erector spinae musculature. We introduce the concept of "equivalent weight" as the weight perceived by the wearer, and use this to explore the apparent reduced effort needed when assisted by the exoskeleton. Therefore, thanks to this assistance, the muscles experience a lower load. The results of the experimental testing on 12 subjects suggest a beneficial effect for the back that corresponds to an apparent reduction of the lifted weight by a factor of 37.5% (the perceived weight of the handled objects is reduced by over a third). Finally, this analytical method introduces an innovative approach to quantify the ergonomic benefit introduced by the exoskeletons' assistance. This aims to assess the ergonomic risk to support the adoption of exoskeletons in the workplace.


Asunto(s)
Dispositivo Exoesqueleto , Fenómenos Biomecánicos , Ergonomía , Humanos
16.
Wearable Technol ; 2: e12, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38486626

RESUMEN

Assistive strategies for occupational back-support exoskeletons have focused, mostly, on lifting tasks. However, in occupational scenarios, it is important to account not only for lifting but also for other activities. This can be done exploiting human activity recognition algorithms that can identify which task the user is performing and trigger the appropriate assistive strategy. We refer to this ability as exoskeleton versatility. To evaluate versatility, we propose to focus both on the ability of the device to reduce muscle activation (efficacy) and on its interaction with the user (dynamic fit). To this end, we performed an experimental study involving healthy subjects replicating the working activities of a manufacturing plant. To compare versatile and non-versatile exoskeletons, our device, XoTrunk, was controlled with two different strategies. Correspondingly, we collected muscle activity, kinematic variables and users' subjective feedbacks. Also, we evaluated the task recognition performance of the device. The results show that XoTrunk is capable of reducing muscle activation by up to in lifting and in carrying. However, the non-versatile control strategy hindered the users' natural gait (e.g., reduction of hip flexion), which could potentially lower the exoskeleton acceptance. Detecting carrying activities and adapting the control strategy, resulted in a more natural gait (e.g., increase of hip flexion). The classifier analyzed in this work, showed promising performance (online accuracy > 91%). Finally, we conducted 9 hours of field testing, involving four users. Initial subjective feedbacks on the exoskeleton versatility, are presented at the end of this work.

17.
IEEE Trans Neural Syst Rehabil Eng ; 28(9): 2053-2062, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32746325

RESUMEN

Selecting actuators for assistive exoskeletons involves decisions in which designers usually face contrasting requirements. While certain choices may depend on the application context or design philosophy, it is generally desirable to avoid oversizing actuators in order to obtain more lightweight and transparent systems, ultimately promoting the adoption of a given device. In many cases, the torque and power requirements can be relaxed by exploiting the contribution of an elastic element acting in mechanical parallel. This contribution considers one such case and introduces a methodology for the evaluation of different actuator choices resulting from the combination of different motors, reduction gears, and parallel stiffness profiles, helping to match actuator capabilities to the task requirements. Such methodology is based on a graphical tool showing how different design choices affect the actuator as a whole. To illustrate the approach, a back-support exoskeleton for lifting tasks is considered as a case study.


Asunto(s)
Dispositivo Exoesqueleto , Diseño de Equipo , Humanos , Aparatos Ortopédicos , Torque
18.
Front Psychol ; 11: 1111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760305

RESUMEN

Emotion, mood, and stress recognition (EMSR) has been studied in laboratory settings for decades. In particular, physiological signals are widely used to detect and classify affective states in lab conditions. However, physiological reactions to emotional stimuli have been found to differ in laboratory and natural settings. Thanks to recent technological progress (e.g., in wearables) the creation of EMSR systems for a large number of consumers during their everyday activities is increasingly possible. Therefore, datasets created in the wild are needed to insure the validity and the exploitability of EMSR models for real-life applications. In this paper, we initially present common techniques used in laboratory settings to induce emotions for the purpose of physiological dataset creation. Next, advantages and challenges of data collection in the wild are discussed. To assess the applicability of existing datasets to real-life applications, we propose a set of categories to guide and compare at a glance different methodologies used by researchers to collect such data. For this purpose, we also introduce a visual tool called Graphical Assessment of Real-life Application-Focused Emotional Dataset (GARAFED). In the last part of the paper, we apply the proposed tool to compare existing physiological datasets for EMSR in the wild and to show possible improvements and future directions of research. We wish for this paper and GARAFED to be used as guidelines for researchers and developers who aim at collecting affect-related data for real-life EMSR-based applications.

20.
Front Neurorobot ; 14: 31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714175

RESUMEN

There is a growing international interest in developing soft wearable robotic devices to improve mobility and daily life autonomy as well as for rehabilitation purposes. Usability, comfort and acceptance of such devices will affect their uptakes in mainstream daily life. The XoSoft EU project developed a modular soft lower-limb exoskeleton to assist people with low mobility impairments. This paper presents the bio-inspired design of a soft, modular exoskeleton for lower limb assistance based on pneumatic quasi-passive actuation. The design of a modular reconfigurable prototype and its performance are presented. This actuation centers on an active mechanical element to modulate the assistance generated by a traditional passive component, in this case an elastic belt. This study assesses the feasibility of this type of assistive device by evaluating the energetic outcomes on a healthy subject during a walking task. Human-exoskeleton interaction in relation to task-based biological power assistance and kinematics variations of the gait are evaluated. The resultant assistance, in terms of overall power ratio (Λ) between the exoskeleton and the assisted joint, was 26.6% for hip actuation, 9.3% for the knee and 12.6% for the ankle. The released maximum power supplied on each articulation, was 113.6% for the hip, 93.2% for the knee, and 150.8% for the ankle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA