Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(6): 061802, 2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34420344

RESUMEN

In light of the recent result of the muon g-2 experiment and the update on the test of lepton flavor universality R_{K} published by the LHCb Collaboration, we systematically study for the first time a set of models with minimal field content that can simultaneously give (i) a thermal dark matter candidate; (ii) large loop contributions to b→sℓℓ processes able to address R_{K} and the other B anomalies; (iii) a natural solution to the muon g-2 discrepancy through chirally enhanced contributions. Moreover, this type of model with heavy particles and chiral enhancement can evade the strong limits from direct searches but can be tested at present and future colliders and direct-detection searches.

2.
Phys Rev Lett ; 115(18): 181801, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565457

RESUMEN

The LHCb Collaboration reported anomalies in B→K^{*}µ^{+}µ^{-}, B_{s}→ϕµ^{+}µ^{-}, and R(K)=B→Kµ^{+}µ^{-}/B→Ke^{+}e^{-}. Furthermore, BABAR, BELLE, and LHCb Collaborations found hints for the violation of lepton-flavor universality violation in R(D^{(*)})=B→D^{(*)}τν/B→D^{(*)}ℓν. In this Letter we reexamine these decays and their correlations to B→K^{(*)}νν[over ¯] using gauge invariant dim-6 operators. For the numerical analysis we focus on scenarios in which new physics couples, in the interaction eigenbasis, to third generation quarks and lepton only. We conclude that such a setup can explain the b→sµ^{+}µ^{-} data simultaneously with R(D^{(*)}) for small mixing angles in the lepton sector (of the order of π/16) and very small mixing angles in the quark sector (smaller than V_{cb}). In these regions of parameter space, B→K^{(*)}τµ and B_{s}→τµ can be order 10^{-6}. Possible UV completions are briefly discussed.

3.
Eur Phys J C Part Fields ; 74(12): 3211, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25983641

RESUMEN

We study the anatomy and phenomenology of lepton flavor violation (LFV) in the context of flavored gauge mediation (FGM). Within FGM, the messenger sector couples directly to the MSSM matter fields with couplings controlled by the same dynamics that explains the hierarchies in the SM Yukawas. Although the pattern of flavor violation depends on the particular underlying flavor model, FGM provides a built-in flavor suppression similar to wave function renormalization or SUSY partial compositeness. Moreover, in contrast to these models, there is an additional suppression of left-right flavor transitions by third-generation Yukawas that in particular provides an extra protection against flavor-blind phases. We exploit the consequences of this setup for lepton flavor phenomenology, assuming that the new couplings are controlled by simple [Formula: see text] flavor models that have been proposed to accommodate large neutrino mixing angles. Remarkably, it turns out that in the context of FGM these models can pass the impressive constraints from LFV processes and leptonic electric dipole moments (EDMs) even for light superpartners, therefore offering the possibility of resolving the longstanding muon [Formula: see text] anomaly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA