Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
J Environ Radioact ; 238-239: 106721, 2021 Nov.
Article En | MEDLINE | ID: mdl-34509097

Forests cover approximately 70% of the area contaminated by the Fukushima Daiichi Nuclear Power Plant accident in 2011. Following this severe contamination event, radiocaesium (137Cs) is anticipated to circulate within these forest ecosystems for several decades. Since the accident, a number of models have been constructed to evaluate the past and future dynamics of 137Cs in these forests. To explore the performance and uncertainties of these models we conducted a model inter-comparison exercise using Fukushima data. The main scenario addressed an evergreen needleleaf forest (cedar/cypress), which is the most common and commercially important forest type in Japan. We also tested the models with two forest management scenarios (decontamination by removal of soil surface litter and forest regeneration) and, furthermore, a deciduous broadleaf forest (konara oak) scenario as a preliminary modelling study of this type of forest. After appropriate calibration, the models reproduced the observed data reliably and the ranges of calculated trajectories were narrow in the early phase after the fallout. Successful model performances in the early phase were probably attributable to the availability of comprehensive data characterizing radiocaesium partitioning in the early phase. However, the envelope of the calculated model end points enlarged in long-term simulations over 50 years after the fallout. It is essential to continue repetitive verification/validation processes using decadal data for various forest types to improve the models and to update the forecasting capacity of the models.


Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Cesium Radioisotopes/analysis , Ecosystem , Forests , Japan , Soil Pollutants, Radioactive/analysis
2.
J Environ Radioact ; 161: 22-34, 2016 Sep.
Article En | MEDLINE | ID: mdl-26153556

Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy depuration (through biological and physical mechanisms) and the shielding of gamma rays emitted from the forest floor by vegetation. Our study finally suggests that airborne surveys might have not reflected dose rates at ground level in forest systems, which were predicted to slightly increase by 5-10% during the same period of time.


Air Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Models, Theoretical , Agriculture , Cities , Forests , Japan , Rain
3.
J Environ Radioact ; 139: 24-32, 2015 Jan.
Article En | MEDLINE | ID: mdl-25464038

Tritium and (14)C are currently the two main radionuclides discharged by nuclear industry. Tritium integrates into and closely follows the water cycle and, as shown recently the carbon cycle, as does (14)C (Eyrolle-Boyer et al., 2014a, b). As a result, these two elements persist in both terrestrial and aquatic environments according to the recycling rates of organic matter. Although on average the organically bound tritium (OBT) activity of sediments in pristine rivers does not significantly differ today (2007-2012) from the mean tritiated water (HTO) content on record for rainwater (2.4 ± 0.6 Bq/L and 1.6 ± 0.4 Bq/L, respectively), regional differences are expected depending on the biomass inventories affected by atmospheric global fallout from nuclear testing and the recycling rate of organic matter within watersheds. The results obtained between 2007 and 2012 for (14)C show that the levels varied between 94.5 ± 1.5 and 234 ± 2.7 Bq/kg of C for the sediments in French rivers and across a slightly higher range of 199 ± 1.3 to 238 ± 3.1 Bq/kg of C for fish. This variation is most probably due to preferential uptake of some organic carbon compounds by fish restraining (14)C dilution with refractory organic carbon and/or with old carbonates both depleted in (14)C. Overall, most of these ranges of values are below the mean baseline value for the terrestrial environment (232.0 ± 1.8 Bq/kg of C in 2012, Roussel-Debet, 2014a) in relation to dilution by the carbonates and/or fossil organic carbon present in aquatic systems. This emphasises yet again the value of establishing regional baseline value ranges for these two radionuclides in order to account for palaeoclimatic and lithological variations. Besides, our results obtained from sedimentary archive investigation have confirmed the delayed contamination of aquatic sediments by tritium from the past nuclear tests atmospheric fallout, as recently demonstrated from data chronicles (Eyrolle-Boyer et al., 2014a,b). Thus Sedimentary archives can be successfully used to reconstruct past (14)C and OBT levels. Additionally, sediment repositories potentially represent significant storages of OBT that may account for in case of further remobilisation. We finally show that floods can significantly affect the OBT and (14)C levels within suspended particles or sediments depending on the origin of particles reinforcing the need to acquire baseline value range at a regional scale.


Carbon Radioisotopes/analysis , Tritium/analysis , Water Pollutants, Radioactive/analysis
4.
J Environ Radioact ; 100(9): 757-66, 2009 Sep.
Article En | MEDLINE | ID: mdl-19100665

Compared to agricultural lands, forests are complex ecosystems as they can involve diverse plant species associations, several vegetative strata (overstorey, shrubs, herbaceous and other annual plant layer) and multi-layered soil profiles (forest floor, hemi-organic and mineral layers). A high degree of variability is thus generally observed in radionuclide transfers and redistribution patterns in contaminated forests. In the long term, the soil compartment represents the major reservoir of radionuclides which can give rise to long-term plant and hence food contamination. For practical reasons, the contamination of various specific forest products has commonly been quantified using the aggregated transfer factor (T(ag) in m(2)kg(-1)) which integrates various environmental parameters including soil and plant type, root distribution as well as nature and vertical distribution of the deposits. Long lasting availability of some radionuclides was shown to be the source of much higher transfer in forest ecosystems than in agricultural lands. This study aimed at reviewing the most relevant quantitative information on radionuclide transfers to forest biota including trees, understorey vegetation, mushrooms, berries and game animals. For both radiocaesium and radiostrontium in trees, the order of magnitude of mean T(ag) values was 10(-3)m(2)kg(-1) (dry weight). Tree foliage was usually 2-12 times more contaminated than trunk wood. Maximum contamination of tree components with radiocaesium was associated with (semi-)hydromorphic areas with thick humus layers. The transfer of radionuclides to mushrooms and berries is high, in comparison with foodstuffs grown in agricultural systems. Concerning caesium uptake by mushrooms, the transfer is characterized by a very large variability of T(ag), from 10(-3) to 10(1)m(2)kg(-1) (dry weight). For berries, typical values are around 0.01-0.1 m(2)kg(-1) (dry weight). Transfer of radioactive caesium to game animals and reindeer and the rate of activity reduction, quantified as an ecological half-life, reflect the soil and pasture conditions at individual locations. Forests in temperate and boreal regions differ with respect to soil type and vegetation, and a faster decline of muscle activity concentrations in deer occurs in the temperate zone. However, in wild boar the caesium activity concentration shows no decline because of its special feeding habits. In the late phase, i.e. at least a few months since the external radionuclide contamination on feed plants has been removed, a T(ag) value of 0.01 m(2)kg(-1) (fresh weight) is common for (137)Cs in the muscles of adult moose and terrestrial birds living in boreal forests, and 0.03 m(2)kg(-1) (fresh weight) for arctic hare. Radiocaesium concentrations in reindeer muscle in winter may exceed the summer content by a factor of more than two, the mean T(ag) values for winter ranging from 0.02 to 0.8 m(2)kg(-1) (fresh weight), and in summer from 0.04 to 0.4m(2)kg(-1). The highest values are found in the year of initial contamination, followed by a gradual reduction. In waterfowl a relatively fast decline in uptake of (137)Cs has been found, with T(ag) values changing from 0.01 to 0.002 m(2)kg(-1) (fresh weight) in the three years after the contaminating event, the rate being determined by the dynamics of (137)Cs in aquatic ecosystems.


Ecosystem , Soil Pollutants, Radioactive/metabolism , Trees/metabolism , Agaricales/metabolism , Animals , Cesium Radioisotopes/analysis , Cesium Radioisotopes/metabolism , Fruit/metabolism , Soil Pollutants, Radioactive/analysis
...