Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1341714, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434431

RESUMEN

Horticultural crops constantly face abiotic stress factors such as salinity, which have intensified in recent years due to accelerated climate change, significantly affecting their yields and profitability. Under these conditions, it has become necessary to implement effective and sustainable solutions to guarantee agricultural productivity and food security. The influence of BALOX®, a biostimulant of plant origin, was tested on the responses to salinity of Lactuca sativa L. var. longifolia plants exposed to salt concentrations up to 150 mM NaCl, evaluating different biometric and biochemical properties after 25 days of treatment. Control plants were cultivated under the same conditions but without the biostimulant treatment. An in situ analysis of root characteristics using a non-destructive, real-time method was also performed. The salt stress treatments inhibited plant growth, reduced chlorophyll and carotenoid contents, and increased the concentrations of Na+ and Cl- in roots and leaves while reducing those of Ca2+. BALOX® application had a positive effect because it stimulated plant growth and the level of Ca2+ and photosynthetic pigments. In addition, it reduced the content of Na+ and Cl- in the presence and the absence of salt. The biostimulant also reduced the salt-induced accumulation of stress biomarkers, such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2). Therefore, BALOX® appears to significantly reduce osmotic, ionic and oxidative stress levels in salt-treated plants. Furthermore, the analysis of the salt treatments' and the biostimulant's direct effects on roots indicated that BALOX®'s primary mechanism of action probably involves improving plant nutrition, even under severe salt stress conditions, by protecting and stimulating the root absorption zone.

2.
Sci Rep ; 13(1): 13281, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587264

RESUMEN

Biological invasions represent a major threat to natural ecosystems. A primary source of invasive plants is ornamental horticulture, which selects traits related to invasiveness. This study evaluated the responses to water stress during germination and vegetative growth of six species used as ornamental or medicinal plants. Three of them are recognised as invasive weeds in many world areas. Seeds were exposed to increasing concentrations of polyethylene glycol (PEG) mimicking drought stress, and young plants in the vegetative growth stage were subjected to two levels of water stress. Results indicated that in the absence of stress in control conditions, the most competitive species were those reported as weeds, namely Bidens pilosa L., Oenothera biennis L., and Centaurea cyanus L., the last regarding germination velocity. Under stress, only two species, Limonium sinuatum (L.) Mill. and C. cyanus, maintained germination at -1 MPa osmotic potential, but in the recovery experiment, an osmopriming effect of PEG was observed. The most tolerant species during growth were two natives in the Mediterranean region, L. sinuatum and Lobularia maritima (L.) Desv., both accumulating the highest proline concentrations. The sixth species studied, Echinacea purpurea (L.) Moench., proved to be more susceptible to stress in the two developmental stages. This study reveals that the most significant traits associated with invasiveness were related to germination, especially in the absence of stress.


Asunto(s)
Deshidratación , Germinación , Semillas , Ecosistema , Malezas
3.
Life (Basel) ; 13(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37109489

RESUMEN

One of the most important challenges horticultural crops confront is drought, particularly in regions such as the Mediterranean basin, where water supplies are usually limited and will become even scarcer due to global warming. Therefore, the selection and diversification of stress-tolerant cultivars are becoming priorities of contemporary ornamental horticulture. This study explored the impact of water stress on two Tropaeolum species frequently used in landscaping. Young plants obtained by seed germination were exposed to moderate water stress (half the water used in the control treatments) and severe water stress (complete withholding of irrigation) for 30 days. Plant responses to these stress treatments were evaluated by determining several growth parameters and biochemical stress markers. The latter were analysed by spectrophotometric methods and, in some cases, by non-destructive measurements using an optical sensor. The statistical analysis of the results indicated that although the stress responses were similar in these two closely related species, T. minus performed better under control and intermediate water stress conditions but was more susceptible to severe water stress. On the other hand, T. majus had a stronger potential for adaptation to soil water scarcity, which may be associated with its reported expansion and naturalisation in different regions of the world. The variations in proline and malondialdehyde concentrations were the most reliable biochemical indicators of water stress effects. The present study also showed a close relationship between the patterns of variation of flavonoid and chlorophyll contents obtained by sensor-based and spectrophotometric methods.

4.
Plants (Basel) ; 12(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36904049

RESUMEN

Global warming is linked to progressive soil salinisation, which reduces crop yields, especially in irrigated farmland on arid and semiarid regions. Therefore, it is necessary to apply sustainable and effective solutions that contribute to enhanced crop salt tolerance. In the present study, we tested the effects of a commercial biostimulant (BALOX®) containing glycine betaine (GB) and polyphenols on the activation of salinity defense mechanisms in tomato. The evaluation of different biometric parameters and the quantification of biochemical markers related to particular stress responses (osmolytes, cations, anions, oxidative stress indicators, and antioxidant enzymes and compounds) was carried out at two phenological stages (vegetative growth and the beginning of reproductive development) and under different salinity conditions (saline and non-saline soil, and irrigation water), using two formulations (different GB concentrations) and two doses of the biostimulant. Once the experiments were completed, the statistical analysis revealed that both formulations and doses of the biostimulant produced very similar effects. The application of BALOX® improved plant growth and photosynthesis and assisted osmotic adjustment in root and leaf cells. The biostimulant effects are mediated by the control of ion transport, reducing the uptake of toxic Na+ and Cl- ions and favoring the accumulation of beneficial K+ and Ca2+ cations, and a significant increase in leaf sugar and GB contents. BALOX® significantly reduced salt-induced oxidative stress and its harmful effects, as evidenced by a decrease in the concentration of oxidative stress biomarkers, such as malondialdehyde and oxygen peroxide, which was accompanied by the reduction of proline and antioxidant compound contents and the specific activity of antioxidant enzymes with respect to the non-treated plants.

5.
Plants (Basel) ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36616320

RESUMEN

Limonium angustebracteatum is an endemic halophyte from the Spanish Mediterranean coastal salt marshes. To investigate this species' ability to cope with recurrent drought and salt stress, one-year-old plants were subjected to two salt stress treatments (watering with 0.5 and 1 M NaCl solutions), one water stress treatment (complete irrigation withholding), or watered with non-saline water for the control, across three phases: first stress (30 days), recovery from both stresses (15 days), and second stress (15 days). Growth and biochemical parameters were determined after each period. The plants showed high salt tolerance but were sensitive to water deficit, as shown by the decrease in leaf fresh weight and water content, root water content, and photosynthetic pigments levels in response to the first water stress; then, they were restored to the respective control values upon recovery. Salt tolerance was partly based on the accumulation of Na+, Cl- and Ca2+ in the roots and predominantly in the leaves; ion levels also decreased to control values during recovery. Organic osmolytes (proline and total soluble sugars), oxidative stress markers (malondialdehyde and H2O2), and antioxidant compounds (total phenolic compounds and flavonoids) increased by various degrees under the first salt and water stress treatments, and declined after recovery. The analysed variables increased again, but generally to a lesser extent, during the second stress phase, suggesting the occurrence of stress acclimation acquired by the activation of defence mechanisms during the first stress period.

6.
Plants (Basel) ; 11(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35448785

RESUMEN

Current agricultural problems, such as the decline of freshwater and fertile land, foster saline agriculture development. Salicornia and Sarcocornia species, with a long history of human consumption, are ideal models for developing halophyte crops. A greenhouse experiment was set up to compare the response of the perennial Sarcocornia fruticosa and the two annual Salicornia europaea and S. veneta to 30 days of salt stress (watering with 700 mM NaCl) and water deficit (complete withholding of irrigation) separate treatments, followed by 15 days of recovery. The three species showed high tolerance to salt stress, based on the accumulation of ions (Na+, Cl-, Ca2+) in the shoots and the synthesis of organic osmolytes. These defence mechanisms were partly constitutive, as active ion transport to the shoots and high levels of glycine betaine were also observed in non-stressed plants. The three halophytes were sensitive to water stress, albeit S. fruticosa to a lesser extent. In fact, S. fruticosa showed a lower reduction in shoot fresh weight than S. europaea or S. veneta, no degradation of photosynthetic pigments, a significant increase in glycine betaine contents, and full recovery after the water stress treatment. The observed differences could be due to a better adaptation of S. fruticosa to a drier natural habitat, as compared to the two Salicornia species. However, a more gradual stress-induced senescence in the perennial S. fruticosa may contribute to greater drought tolerance in this species.

7.
Plants (Basel) ; 10(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562812

RESUMEN

Owing to the high interspecific biodiversity, halophytes have been regarded as a tool for understanding salt tolerance mechanisms in plants in view of their adaptation to climate change. The present study addressed the physiological response to salinity of six halophyte species common in the Mediterranean area: Artemisia absinthium, Artemisia vulgaris, Atriplex halimus, Chenopodium album, Salsola komarovii, and Sanguisorba minor. A 161-day pot experiment was conducted, watering the plants with solutions at increasing NaCl concentration (control, 100, 200, 300 and 600 mM). Fresh weight (FW), leaf stomatal conductance (GS), relative water content (RWC) and water potential (WP) were measured. A principal component analysis (PCA) was used to describe the relationships involving the variables that accounted for data variance. A. halimus was shown to be the species most resilient to salinity, being able to maintain FW up to 300 mM, and RWC and WP up to 600 mM; it was followed by C. album. Compared to them, A. vulgaris and S. komarovii showed intermediate performances, achieving the highest FW (A. vulgaris) and GS (S. komarovii) under salinity. Lastly, S. minor and A. absinthium exhibited the most severe effects with a steep drop in GS and RWC. Lower WP values appeared to be associated with best halophyte performances under the highest salinity levels, i.e., 300 and 600 mM NaCl.

8.
Plants (Basel) ; 9(5)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354055

RESUMEN

Salinity is a major constraint for plant growth in world areas exposed to salinization. Sorghum bicolor (L.) Moench is a species that has received attention for biomass production in saline areas thanks to drought and salinity tolerance. To improve the knowledge in the mechanisms of salt tolerance and sodium allocation to plant organs, a pot experiment was set up. The experimental design combined three levels of soil salinity (0, 3, and 6 dS m-1) with three levels of water salinity (0, 2-4, and 4-8 dS m-1) and two water regimes: no salt leaching (No SL) and salt leaching (SL). This latter regime was carried out with the same three water salinity levels and resulted in average +81% water supply. High soil salinity associated with high water salinity (HSS-HWS) affected plant growth and final dry weight (DW) to a greater extent in No SL (-87% DW) than SL (-42% DW). Additionally, HSS-HWS determined a stronger decrease in leaf water potential and relative water content under No SL than SL. HSS-HWS with No SL resulted in a higher Na bioaccumulation from soil to plant and in translocation from roots to stem and, finally, leaves, which are the most sensitive organ. Higher water availability (SL), although determining higher salt input when associated with HWS, limited Na bioaccumulation, prevented Na translocation to leaves, and enhanced selective absorption of Ca vs. Na. At plant level, higher Na accumulation was associated with lower Ca and Mg accumulation, especially in No SL. This indicates altered ion homeostasis and cation unbalance.

9.
Data Brief ; 19: 594-600, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29900359

RESUMEN

The present investigation attempted to assess the influence of two light sources, LED versus fluorescent light, on seed germination of nine aromatic species belonging to the genus Artemisia, Atriplex, Chenopodium, Salicornia, Sanguisorba, Portulaca and Rosmarinus. Pre-germination test was carried out in petri dishes, evidencing the need to overcome seed dormancy through cold stratification in Salicornia europaea. Thereafter, seeds were germinated in small trays with peat moss substrate in two growth chambers illuminated with either LED or fluorescent light featuring similar photosynthetic photon flux density. Germination lasted 20 days, during which time five indexes of germination performance (germination percentage, speed of germination, germination energy, germination rate index, and mean daily germination) were evaluated. At the end, shoot length and seedling fresh weight were assessed as early growth traits. Data are made available to allow critical evaluation of experimental outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA