Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(2): 100496, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640924

RESUMEN

Transcriptional enhanced associate domain family members 1 to 4 (TEADs) are a family of four transcription factors and the major transcriptional effectors of the Hippo pathway. In order to activate transcription, TEADs rely on interactions with other proteins, such as the transcriptional effectors Yes-associated protein and transcriptional co-activator with PDZ-binding motif. Nuclear protein interactions involving TEADs influence the transcriptional regulation of genes involved in cell growth, tissue homeostasis, and tumorigenesis. Clearly, protein interactions for TEADs are functionally important, but the full repertoire of TEAD interaction partners remains unknown. Here, we employed an affinity purification mass spectrometry approach to identify nuclear interacting partners of TEADs. We performed affinity purification mass spectrometry experiment in parallel in two different cell types and compared a wildtype TEAD bait protein to a nuclear localization sequence mutant that does not localize to the nucleus. We quantified the results using SAINT analysis and found a significant enrichment of proteins linked to DNA damage including X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair cross-complementing protein 6 (XRCC6), poly(ADP-ribose) polymerase 1 (PARP1), and Rap1-interacting factor 1 (RIF1). In cellular assays, we found that TEADs co-localize with DNA damage-induced nuclear foci marked by histone H2AX phosphorylated on S139 (γH2AX) and Rap1-interacting factor 1. We also found that depletion of TEAD proteins makes cells more susceptible to DNA damage by various agents and that depletion of TEADs promotes genomic instability. Additionally, depleting TEADs dampens the efficiency of DNA double-stranded break repair in reporter assays. Our results connect TEADs to DNA damage response processes, positioning DNA damage as an important avenue for further research of TEAD proteins.


Asunto(s)
Daño del ADN , Reparación del ADN , Factores de Transcripción de Dominio TEA , Humanos , Carcinogénesis/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo
2.
Trends Cancer ; 5(5): 297-307, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31174842

RESUMEN

The Hippo pathway remains a central focus in both basic and translational research and is a key modulator of developmental biology. Dysregulation of the pathway is associated with a plethora of human cancers and there are multiple efforts to target key components of the pathway for disease intervention. In this review, we briefly highlight the latest research advances around the core components of the Hippo pathway in cancer. More specifically, we discuss several genetic aberrations of these factors as mechanisms for the development of cancers, including genetic amplification, deletion, and gene fusions. Additionally, we highlight the role of the Hippo pathway in cancer therapy resistance and tumor immunogenicity. Last, we summarize the ongoing efforts to target the pathway in cancers.


Asunto(s)
Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Vía de Señalización Hippo , Humanos , Neoplasias/etiología , Neoplasias/patología , Neoplasias/terapia , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos
3.
Pigment Cell Melanoma Res ; 32(2): 269-279, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30156010

RESUMEN

The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAFV600E ) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1-null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild-type counterparts. Molecularly, Bap1-null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1-null tumors are completely responsive to BRAF- and MEK-targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.


Asunto(s)
Carcinogénesis/genética , Carcinogénesis/patología , Melanoma/genética , Melanoma/patología , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Daño del ADN , Transición Epitelial-Mesenquimal/genética , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Melanocitos/metabolismo , Melanocitos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Transcripción Genética , Ubiquitinación , Melanoma Cutáneo Maligno
4.
Cell Rep ; 19(1): 162-174, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28380355

RESUMEN

Ultraviolet (UV) radiation is a carcinogen that generates DNA lesions. Here, we demonstrate an unexpected role for DGCR8, an RNA binding protein that canonically functions with Drosha to mediate microRNA processing, in the repair of UV-induced DNA lesions. Treatment with UV induced phosphorylation on serine 153 (S153) of DGCR8 in both human and murine cells. S153 phosphorylation was critical for cellular resistance to UV, the removal of UV-induced DNA lesions, and the recovery of RNA synthesis after UV exposure but not for microRNA expression. The RNA-binding and Drosha-binding activities of DGCR8 were not critical for UV resistance. DGCR8 depletion was epistatic to defects in XPA, CSA, and CSB for UV sensitivity. DGCR8 physically interacted with CSB and RNA polymerase II. JNKs were involved in the UV-induced S153 phosphorylation. These findings suggest that UV-induced S153 phosphorylation mediates transcription-coupled nucleotide excision repair of UV-induced DNA lesions in a manner independent of microRNA processing.


Asunto(s)
Daño del ADN , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo , Animales , Anisomicina/metabolismo , Antracenos/metabolismo , ADN/metabolismo , ADN/efectos de la radiación , Reparación del ADN , Células HCT116 , Células HeLa , Humanos , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/metabolismo , Ratones , Fosforilación , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa III/genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...