Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559130

RESUMEN

A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogasterwing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.

2.
Genetics ; 226(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38302115

RESUMEN

Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in the lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/genética , Proteínas de Drosophila/genética , Oogénesis/genética , Ciclo Celular/genética , Folículo Ovárico , Drosophila melanogaster/genética
3.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873193

RESUMEN

Endocycling cells grow and repeatedly duplicate their genome without dividing. Cells switch from mitotic cycles to endocycles in response to developmental signals during the growth of specific tissues in a wide range of organisms. The purpose of switching to endocycles, however, remains unclear in many tissues. Additionally, cells can switch to endocycles in response to conditional signals, which can have beneficial or pathological effects on tissues. However, the impact of these unscheduled endocycles on development is underexplored. Here, we use Drosophila ovarian somatic follicle cells as a model to examine the impact of unscheduled endocycles on tissue growth and function. Follicle cells normally switch to endocycles at mid-oogenesis. Inducing follicle cells to prematurely switch to endocycles resulted in lethality of the resulting embryos. Analysis of ovaries with premature follicle cell endocycles revealed aberrant follicular epithelial structure and pleiotropic defects in oocyte growth, developmental gene amplification, and the migration of a special set of follicle cells known as border cells. Overall, these findings reveal how unscheduled endocycles can disrupt tissue growth and function to cause aberrant development.

4.
Semin Cell Dev Biol ; 156: 35-43, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331841

RESUMEN

One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.


Asunto(s)
Neoplasias , Poliploidía , Humanos , Neoplasias/genética , Apoptosis/genética , Segregación Cromosómica , Inestabilidad Genómica
5.
Cell Rep ; 41(3): 111495, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261011

RESUMEN

Somatic adult stem cell lineages in high-turnover tissues are under tight gene regulatory control. Like its mammalian counterpart, the Drosophila intestine precisely adjusts the rate of stem cell division with the onset of differentiation based on physiological demand. Although Notch signaling is indispensable for these decisions, the regulation of Notch activity that drives the differentiation of stem cell progenies into functional, mature cells is not well understood. Here, we report that commitment to the terminally differentiated enterocyte (EC) cell fate is under microRNA control. We show that an intestinally enriched microRNA, miR-956, fine-tunes Notch signaling activity specifically in intermediate, enteroblast (EB) progenitor cells to control EC differentiation. We further identify insensitive mRNA as a target of miR-956 that regulates EB/EC ratios by repressing Notch activity in EBs. In summary, our study highlights a post-transcriptional gene-regulatory mechanism for controlling differentiation in an adult intestinal stem cell lineage.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Receptores Notch/genética , Drosophila melanogaster/fisiología , MicroARNs/genética , Intestinos , ARN Mensajero , Mamíferos/genética
6.
Genetics ; 222(2)2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35762963

RESUMEN

The regulation of stem cell survival, self-renewal, and differentiation is critical for the maintenance of tissue homeostasis. Although the involvement of signaling pathways and transcriptional control mechanisms in stem cell regulation have been extensively investigated, the role of post-transcriptional control is still poorly understood. Here, we show that the nuclear activity of the RNA-binding protein Second Mitotic Wave Missing is critical for Drosophila melanogaster intestinal stem cells and their daughter cells, enteroblasts, to maintain their progenitor cell properties and functions. Loss of swm causes intestinal stem cells and enteroblasts to stop dividing and instead detach from the basement membrane, resulting in severe progenitor cell loss. swm loss is further characterized by nuclear accumulation of poly(A)+ RNA in progenitor cells. Second Mitotic Wave Missing associates with transcripts involved in epithelial cell maintenance and adhesion, and the loss of swm, while not generally affecting the levels of these Second Mitotic Wave Missing-bound mRNAs, leads to elevated expression of proteins encoded by some of them, including the fly ortholog of Filamin. Taken together, this study indicates a nuclear role for Second Mitotic Wave Missing in adult stem cell maintenance, raising the possibility that nuclear post-transcriptional regulation of mRNAs encoding cell adhesion proteins ensures proper attachment of progenitor cells.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Filaminas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Células Madre/metabolismo
7.
Genetics ; 220(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35266522

RESUMEN

FlyBase provides a centralized resource for the genetic and genomic data of Drosophila melanogaster. As FlyBase enters our fourth decade of service to the research community, we reflect on our unique aspects and look forward to our continued collaboration with the larger research and model organism communities. In this study, we emphasize the dedicated reports and tools we have constructed to meet the specialized needs of fly researchers but also to facilitate use by other research communities. We also highlight ways that we support the fly community, including an external resources page, help resources, and multiple avenues by which researchers can interact with FlyBase.


Asunto(s)
Bases de Datos Genéticas , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Genoma , Genómica
8.
Elife ; 112022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023826

RESUMEN

p53 gene family members in humans and other organisms encode a large number of protein isoforms whose functions are largely undefined. Using Drosophila as a model, we find that a p53B isoform is expressed predominantly in the germline where it colocalizes with p53A into subnuclear bodies. It is only p53A, however, that mediates the apoptotic response to ionizing radiation in the germline and soma. In contrast, p53A and p53B are both required for the normal repair of meiotic DNA breaks, an activity that is more crucial when meiotic recombination is defective. We find that in oocytes with persistent DNA breaks p53A is also required to activate a meiotic pachytene checkpoint. Our findings indicate that Drosophila p53 isoforms have DNA lesion and cell type-specific functions, with parallels to the functions of mammalian p53 family members in the genotoxic stress response and oocyte quality control.


Asunto(s)
Proteínas de Drosophila , Genoma de los Insectos/genética , Oocitos/fisiología , Proteína p53 Supresora de Tumor , Animales , Apoptosis/genética , Daño del ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Células Germinativas/citología , Masculino , Meiosis/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Radiación Ionizante , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
9.
G3 (Bethesda) ; 10(11): 4271-4285, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32972999

RESUMEN

Balancers are rearranged chromosomes used in Drosophila melanogaster to maintain deleterious mutations in stable populations, preserve sets of linked genetic elements and construct complex experimental stocks. Here, we assess the phenotypes associated with breakpoint-induced mutations on commonly used third chromosome balancers and show remarkably few deleterious effects. We demonstrate that a breakpoint in p53 causes loss of radiation-induced apoptosis and a breakpoint in Fucosyltransferase A causes loss of fucosylation in nervous and intestinal tissue-the latter study providing new markers for intestinal cell identity and challenging previous conclusions about the regulation of fucosylation. We also describe thousands of potentially harmful mutations shared among X or third chromosome balancers, or unique to specific balancers, including an Ankyrin2 mutation present on most TM3 balancers, and reiterate the risks of using balancers as experimental controls. We used long-read sequencing to confirm or refine the positions of two inversions with breakpoints lying in repetitive sequences and provide evidence that one of the inversions, In(2L)Cy, arose by ectopic recombination between foldback transposon insertions and the other, In(3R)C, cleanly separates subtelomeric and telomeric sequences and moves the subtelomeric sequences to an internal chromosome position. In addition, our characterization of In(3R)C shows that balancers may be polymorphic for terminal deletions. Finally, we present evidence that extremely distal mutations on balancers can add to the stability of stocks whose purpose is to maintain homologous chromosomes carrying mutations in distal genes. Overall, these studies add to our understanding of the structure, diversity and effectiveness of balancer chromosomes.


Asunto(s)
Cromosomas , Drosophila melanogaster , Animales , Inversión Cromosómica , Drosophila melanogaster/genética , Mutación , Fenotipo
10.
G3 (Bethesda) ; 9(10): 3087-3100, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31387856

RESUMEN

Cell division and tissue growth must be coordinated with development. Defects in these processes are the basis for a number of diseases, including developmental malformations and cancer. We have conducted an unbiased RNAi screen for genes that are required for growth in the Drosophila wing, using GAL4-inducible short hairpin RNA (shRNA) fly strains made by the Drosophila RNAi Screening Center. shRNA expression down the center of the larval wing disc using dpp-GAL4, and the central region of the adult wing was then scored for tissue growth and wing hair morphology. Out of 4,753 shRNA crosses that survived to adulthood, 18 had impaired wing growth. FlyBase and the new Alliance of Genome Resources knowledgebases were used to determine the known or predicted functions of these genes and the association of their human orthologs with disease. The function of eight of the genes identified has not been previously defined in Drosophila The genes identified included those with known or predicted functions in cell cycle, chromosome segregation, morphogenesis, metabolism, steroid processing, transcription, and translation. All but one of the genes are similar to those in humans, and many are associated with disease. Knockdown of lin-52, a subunit of the Myb-MuvB transcription factor, or ßNACtes6, a gene involved in protein folding and trafficking, resulted in a switch from cell proliferation to an endoreplication growth program through which wing tissue grew by an increase in cell size (hypertrophy). It is anticipated that further analysis of the genes that we have identified will reveal new mechanisms that regulate tissue growth during development.


Asunto(s)
Proteínas de Drosophila/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Animales , Biomarcadores , Ciclo Celular/genética , Cromosomas/genética , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Poliploidía
11.
PLoS Genet ; 15(7): e1008253, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291240

RESUMEN

Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs). Our evidence suggests that Cyclin A / CDK directly activates the Myb-MuvB (MMB) complex to induce transcription of a battery of genes required for mitosis, and that repression of CDK activity dampens this MMB mitotic transcriptome to promote endoreplication in both iECs and devECs. iECs and devECs differed, however, in that devECs had reduced expression of E2F1-dependent genes that function in S phase, whereas repression of the MMB transcriptome in iECs was sufficient to induce endoreplication without a reduction in S phase gene expression. Among the MMB regulated genes, knockdown of AurB protein and other subunits of the chromosomal passenger complex (CPC) induced endoreplication, as did knockdown of CPC-regulated cytokinetic, but not kinetochore, proteins. Together, our results indicate that the status of a CycA-Myb-MuvB-AurB network determines the decision to commit to mitosis or switch to endoreplication in both iECs and devECs, and suggest that regulation of different steps of this network may explain the known diversity of polyploid cycle types in development and disease.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Endorreduplicación , Animales , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Perfilación de la Expresión Génica , Mitosis , Poliploidía , Proteínas Proto-Oncogénicas c-myb/metabolismo
12.
Autophagy ; 15(5): 771-784, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563404

RESUMEN

The tumor suppressor TP53/p53 is a known regulator of apoptosis and macroautophagy/autophagy. However, the molecular mechanism by which TP53 regulates 2 apparently incompatible processes remains unknown. We found that Drosophila lacking p53 displayed impaired autophagic flux, higher caspase activation and mortality in response to oxidative stress compared with wild-type flies. Moreover, autophagy and apoptosis were differentially regulated by the p53 (p53B) and ΔNp53 (p53A) isoforms: while the former induced autophagy in differentiated neurons, which protected against cell death, the latter inhibited autophagy by activating the caspases Dronc, Drice, and Dcp-1. Our results demonstrate that the differential use of p53 isoforms combined with the antagonism between apoptosis and autophagy ensures the generation of an appropriate p53 biological response to stress.


Asunto(s)
Apoptosis/genética , Autofagia/genética , Drosophila melanogaster/genética , Estrés Oxidativo/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Animales Modificados Genéticamente , Células Cultivadas , Drosophila melanogaster/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética
13.
Nucleic Acids Res ; 47(D1): D759-D765, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30364959

RESUMEN

FlyBase (flybase.org) is a knowledge base that supports the community of researchers that use the fruit fly, Drosophila melanogaster, as a model organism. The FlyBase team curates and organizes a diverse array of genetic, molecular, genomic, and developmental information about Drosophila. At the beginning of 2018, 'FlyBase 2.0' was released with a significantly improved user interface and new tools. Among these important changes are a new organization of search results into interactive lists or tables (hitlists), enhanced reference lists, and new protein domain graphics. An important new data class called 'experimental tools' consolidates information on useful fly strains and other resources related to a specific gene, which significantly enhances the ability of the Drosophila researcher to design and carry out experiments. With the release of FlyBase 2.0, there has also been a restructuring of backend architecture and a continued development of application programming interfaces (APIs) for programmatic access to FlyBase data. In this review, we describe these major new features and functionalities of the FlyBase 2.0 site and how they support the use of Drosophila as a model organism for biological discovery and translational research.


Asunto(s)
Bases de Datos Genéticas , Drosophila melanogaster/genética , Genoma de los Insectos/genética , Genómica , Animales , Dominios Proteicos/genética , Programas Informáticos
14.
Lab Anim (NY) ; 47(10): 277-289, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224793

RESUMEN

Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.


Asunto(s)
Animales de Laboratorio , Bases de Datos como Asunto , Investigación Biomédica Traslacional/métodos , Animales , Modelos Animales
15.
Genetics ; 207(3): 935-947, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28942426

RESUMEN

Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty (hd), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms.


Asunto(s)
Replicación del ADN , Proteínas de Drosophila/genética , Desarrollo Embrionario/genética , Herencia Materna , Proteínas Nucleares/genética , Animales , Inestabilidad Cromosómica , Drosophila , Proteínas de Drosophila/metabolismo , Femenino , Homocigoto , Masculino , Meiosis , Mutación Missense , Proteínas Nucleares/metabolismo , Ovario/metabolismo
16.
Development ; 144(13): 2490-2503, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28576772

RESUMEN

Mitochondrial dysfunction can cause female infertility. An important unresolved issue is the extent to which incompatibility between mitochondrial and nuclear genomes contributes to female infertility. It has previously been shown that a mitochondrial haplotype from D. simulans (simw501 ) is incompatible with a nuclear genome from the D. melanogaster strain Oregon-R (OreR), resulting in impaired development, which was enhanced at higher temperature. This mito-nuclear incompatibility is between alleles of the nuclear-encoded mitochondrial tyrosyl-tRNA synthetase (Aatm) and the mitochondrial-encoded tyrosyl-tRNA that it aminoacylates. Here, we show that this mito-nuclear incompatibility causes a severe temperature-sensitive female infertility. The OreR nuclear genome contributed to death of ovarian germline stem cells and reduced egg production, which was further enhanced by the incompatibility with simw501  mitochondria. Mito-nuclear incompatibility also resulted in aberrant egg morphology and a maternal-effect on embryonic chromosome segregation and survival, which was completely dependent on the temperature and mito-nuclear genotype of the mother. Our findings show that maternal mito-nuclear incompatibility during Drosophila oogenesis has severe consequences for egg production and embryonic survival, with important broader relevance to human female infertility and mitochondrial replacement therapy.


Asunto(s)
Núcleo Celular/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero/patología , Genoma de los Insectos , Genoma Mitocondrial , Oogénesis/genética , Ovario/patología , Animales , División Celular/genética , Supervivencia Celular , Embrión no Mamífero/metabolismo , Femenino , Fertilidad/genética , Fertilización/genética , Pleiotropía Genética , Genotipo , Modelos Biológicos , Oviposición , Óvulo/citología , Óvulo/metabolismo , Pupa/genética , ARN de Transferencia/genética , Células Madre/citología , Células Madre/metabolismo , Temperatura
17.
Mol Biol Cell ; 27(19): 2911-23, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27489338

RESUMEN

Polyploid cancer cells exhibit chromosomal instability (CIN), which is associated with tumorigenesis and therapy resistance. The mechanisms that induce polyploidy and how these mechanisms contribute to CIN are not fully understood. Here we evaluate CIN in human cells that become polyploid through an experimentally induced endoreplication cycle. When these induced endoreplicating cells (iECs) returned to mitosis, it resulted in aneuploidy in daughter cells. This aneuploidy resulted from multipolar divisions, chromosome missegregation, and failure in cytokinesis. The iECs went through several rounds of division, ultimately spawning proliferative cells of reduced ploidy. iECs have reduced levels of the kinesin-14 HSET, which likely accounts for the multipolar divisions, and overexpression of HSET reduced spindle multipolarity. However, HSET overexpression had only mild effects on CIN, suggesting that additional defects must contribute to genomic instability in dividing iECs. Overall our results suggest that transient endoreplication cycles generate a diverse population of proliferative aneuploid cells that have the potential to contribute to tumor heterogeneity.


Asunto(s)
Inestabilidad Cromosómica/genética , Cinesinas/metabolismo , Aneuploidia , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Centrosoma/metabolismo , Centrosoma/fisiología , Inestabilidad Cromosómica/fisiología , Cromosomas , Regulación hacia Abajo , Endorreduplicación/genética , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Humanos , Cinesinas/genética , Mitosis/genética , Poliploidía , Huso Acromático/metabolismo , Polos del Huso/metabolismo
18.
G3 (Bethesda) ; 6(6): 1661-71, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27172191

RESUMEN

Eukaryotic DNA replication begins from multiple origins. The origin recognition complex (ORC) binds origin DNA and scaffolds assembly of a prereplicative complex (pre-RC), which is subsequently activated to initiate DNA replication. In multicellular eukaryotes, origins do not share a strict DNA consensus sequence, and their activity changes in concert with chromatin status during development, but mechanisms are ill-defined. Previous genome-wide analyses in Drosophila and other organisms have revealed a correlation between ORC binding sites and the histone variant H3.3. This correlation suggests that H3.3 may designate origin sites, but this idea has remained untested. To address this question, we examined the enrichment and function of H3.3 at the origins responsible for developmental gene amplification in the somatic follicle cells of the Drosophila ovary. We found that H3.3 is abundant at these amplicon origins. H3.3 levels remained high when replication initiation was blocked, indicating that H3.3 is abundant at the origins before activation of the pre-RC. H3.3 was also enriched at the origins during early oogenesis, raising the possibility that H3.3 bookmarks sites for later amplification. However, flies null mutant for both of the H3.3 genes in Drosophila did not have overt defects in developmental gene amplification or genomic replication, suggesting that H3.3 is not essential for the assembly or activation of the pre-RC at origins. Instead, our results imply that the correlation between H3.3 and ORC sites reflects other chromatin attributes that are important for origin function.


Asunto(s)
Replicación del ADN , Drosophila/genética , Drosophila/metabolismo , Histonas/metabolismo , Origen de Réplica , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Amplificación de Genes , Histonas/genética , Mitosis/genética , Mutación , Oogénesis/genética , Transcripción Genética
19.
Mol Biol Cell ; 27(12): 1885-97, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27075174

RESUMEN

Apoptotic cell death is important for the normal development of a variety of organisms. Apoptosis is also a response to DNA damage and an important barrier to oncogenesis. The apoptotic response to DNA damage is dampened in specific cell types during development. Developmental signaling pathways can repress apoptosis, and reduced cell proliferation also correlates with a lower apoptotic response. However, because developmental signaling regulates both cell proliferation and apoptosis, the relative contribution of cell division to the apoptotic response has been hard to discern in vivo. Here we use Drosophila oogenesis as an in vivo model system to determine the extent to which cell proliferation influences the apoptotic response to DNA damage. We find that different types of cell cycle modifications are sufficient to repress the apoptotic response to ionizing radiation independent of developmental signaling. The step(s) at which the apoptosis pathway was repressed depended on the type of cell cycle modification-either upstream or downstream of expression of the p53-regulated proapoptotic genes. Our findings have important implications for understanding the coordination of cell proliferation with the apoptotic response in development and disease, including cancer and the tissue-specific responses to radiation therapy.


Asunto(s)
Apoptosis/genética , Apoptosis/fisiología , Animales , Apoptosis/efectos de la radiación , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , División Celular , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Ciclina E/metabolismo , Daño del ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Oogénesis/genética , Oogénesis/fisiología , Radiación Ionizante , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
20.
Nucleic Acids Res ; 43(18): 8746-61, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26227968

RESUMEN

Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.


Asunto(s)
ADN/química , Drosophila/genética , Amplificación de Genes , Nucleosomas , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica , Animales , Secuencia de Bases , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Femenino , Folículo Ovárico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA