Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Fungi (Basel) ; 10(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38392775

RESUMEN

Aspergillus fumigatus is the leading cause of aspergillosis, associated with high mortality rates, particularly in immunocompromised individuals. In search of novel genetic targets against aspergillosis, we studied the WOPR transcription factor OsaA. The deletion of the osaA gene resulted in colony growth reduction. Conidiation is also influenced by osaA; both osaA deletion and overexpression resulted in a decrease in spore production. Wild-type expression levels of osaA are necessary for the expression of the conidiation regulatory genes brlA, abaA, and wetA. In addition, osaA is necessary for normal cell wall integrity. Furthermore, the deletion of osaA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, decreased thermotolerance, as well as increased sensitivity to oxidative stress. Metabolomics analysis indicated that osaA deletion or overexpression led to alterations in the production of multiple secondary metabolites, including gliotoxin. This was accompanied by changes in the expression of genes in the corresponding secondary metabolite gene clusters. These effects could be, at least in part, due to the observed reduction in the expression levels of the veA and laeA global regulators when the osaA locus was altered. Importantly, our study shows that osaA is indispensable for virulence in both neutropenic and corticosteroid-immunosuppressed mouse models.

2.
PLoS One ; 18(7): e0286271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37478074

RESUMEN

In fungi, conserved homeobox-domain proteins are transcriptional regulators governing development. In Aspergillus species, several homeobox-domain transcription factor genes have been identified, among them, hbxA/hbx1. For instance, in the opportunistic human pathogen Aspergillus fumigatus, hbxA is involved in conidial production and germination, as well as virulence and secondary metabolism, including production of fumigaclavines, fumiquinazolines, and chaetominine. In the agriculturally important fungus Aspergillus flavus, disruption of hbx1 results in fluffy aconidial colonies unable to produce sclerotia. hbx1 also regulates production of aflatoxins, cyclopiazonic acid and aflatrem. Furthermore, transcriptome studies revealed that hbx1 has a broad effect on the A. flavus genome, including numerous genes involved in secondary metabolism. These studies underline the importance of the HbxA/Hbx1 regulator, not only in developmental processes but also in the biosynthesis of a broad number of fungal natural products, including potential medical drugs and mycotoxins. To gain further insight into the regulatory scope of HbxA in Aspergilli, we studied its role in the model fungus Aspergillus nidulans. Our present study of the A. nidulans hbxA-dependent transcriptome revealed that more than one thousand genes are differentially expressed when this regulator was not transcribed at wild-type levels, among them numerous transcription factors, including those involved in development as well as in secondary metabolism regulation. Furthermore, our metabolomics analyses revealed that production of several secondary metabolites, some of them associated with A. nidulans hbxA-dependent gene clusters, was also altered in deletion and overexpression hbxA strains compared to the wild type, including synthesis of nidulanins A, B and D, versicolorin A, sterigmatocystin, austinol, dehydroaustinol, and three unknown novel compounds.


Asunto(s)
Aspergillus nidulans , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genes Homeobox , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Homeodominio/genética
3.
Sci Rep ; 11(1): 16746, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408194

RESUMEN

Several research efforts on cocoa have been focused on parameters for controlling the transformation process to guarantee homogeneity and quality of cocoa beans, the main raw material in the chocolate industry. The main changes that determine the final quality of cocoa-and also the product's homogeneity-occur during fermentation, given the great number of factors that affect the process. This research seeks to identify the most relevant factors affecting quality in order to offer higher-quality and more homogeneous cocoa for the chocolate industry. The dynamics of the fermentation process were observed in three contrasting locations, monitoring different variables and evaluating the final quality of the cocoa. Results show that temperature and pH profile are the key factors to be monitored and controlled in order to achieve high-quality cocoa beans.

4.
J Fungi (Basel) ; 7(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925458

RESUMEN

Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes: Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are also identified to have higher significance and occurrence in group-specific orthogroups. Overall, our comparative genomics analysis determined positive enrichment existing between orthogroup classes and revealed a prediction of what genomic characteristics make an Ascomycete phytopathogenic. We conclude that genes shared by multiple phytopathogenic genomes are more important for phytopathogenicity than those that are unique in each genome.

5.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757831

RESUMEN

Aspergillus fumigatus is the leading cause of invasive aspergillosis, which in immunocompromised patients results in a mortality rate as high as 90%. Earlier studies showed that HbxA is a global regulator in Aspergillus flavus affecting morphological development and secondary metabolism. Here, we determined its role in A. fumigatus, examining whether HbxA influences the regulation of asexual development, natural product biosynthesis, and virulence of this fungus. Our analysis demonstrated that removal of the hbxA gene caused a near-complete loss of conidial production in the mutant strain, as well as a slight reduction in colony growth. Other aspects of asexual development are affected, such as size and germination of conidia. Furthermore, we showed that in A. fumigatus, the loss of hbxA decreased the expression of the brlA central regulatory pathway involved in asexual development, as well as the expression of the "fluffy" genes flbB, flbD, and fluG HbxA was also found to regulate secondary metabolism, affecting the biosynthesis of multiple natural products, including fumigaclavines, fumiquinazolines, and chaetominine. In addition, using a neutropenic mouse infection model, hbxA was found to negatively impact the virulence of A. fumigatusIMPORTANCE The number of immunodepressed individuals is increasing, mainly due to the greater life expectancy in immunodepressed patients due to improvements in modern medical treatments. However, this population group is highly susceptible to invasive aspergillosis. This devastating illness, mainly caused by the fungus Aspergillus fumigatus, is associated with mortality rates reaching 90%. Treatment options for this disease are currently limited, and a better understanding of A. fumigatus genetic regulatory mechanisms is paramount for the design of new strategies to prevent or combat this infection. Our work provides new insight into the regulation of the development, metabolism, and virulence of this important opportunistic pathogen. The transcriptional regulatory gene hbxA has a profound effect on A. fumigatus biology, governing multiple aspects of conidial development. This is relevant since conidia are the main source of inoculum in Aspergillus infections. Importantly, hbxA also regulates the biosynthesis of secondary metabolites and the pathogenicity of this fungus.


Asunto(s)
Aspergillus fumigatus/fisiología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/genética , Elementos Reguladores de la Transcripción/genética , Aspergillus fumigatus/crecimiento & desarrollo , Proteínas Fúngicas/metabolismo , Reproducción Asexuada , Metabolismo Secundario , Virulencia
6.
G3 (Bethesda) ; 9(12): 4087-4096, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31601618

RESUMEN

Aspergillus flavus colonizes numerous oil seed crops such as maize, peanuts, treenuts and cottonseed worldwide, contaminating them with aflatoxins and other harmful toxins. Previously our lab characterized the gene rmtA, which encodes an arginine methyltransferase in A. flavus, and demonstrated its role governing the expression of regulators in the aflatoxin gene cluster and subsequent synthesis of toxin. Furthermore, our studies revealed that rmtA also controls conidial and sclerotial development implicating it as an epigenetic regulator in A. flavus To confirm this, we performed a RNA sequencing analysis to ascertain the extent of rmtA's influence on the transcriptome of A. flavus In this analysis we identified over 2000 genes that were rmtA-dependent, including over 200 transcription factor genes, as well as an uncharacterized secondary metabolite gene cluster possibly responsible for the synthesis of an epidithiodiketopiperazine-like compound. Our results also revealed rmtA-dependent genes involved in multiple types of abiotic stress response in A. flavus Importantly, hundreds of genes active during maize infection were also regulated by rmtA In addition, in the animal infection model, rmtA was dispensable for virulence, however forced overexpression of rmtA increased mortality with respect to the wild type.


Asunto(s)
Aspergillus flavus/genética , Aspergillus flavus/patogenicidad , Proteínas Fúngicas/metabolismo , Metabolismo Secundario/genética , Estrés Fisiológico/genética , Transcriptoma/genética , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Insectos , Enfermedades de las Plantas/microbiología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética , Virulencia/genética , Zea mays/microbiología
7.
PLoS Genet ; 15(10): e1008419, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609971

RESUMEN

Microorganisms sense environmental fluctuations in nutrients and light, coordinating their growth and development accordingly. Despite their critical roles in fungi, only a few G-protein coupled receptors (GPCRs) have been characterized. The Aspergillus nidulans genome encodes 86 putative GPCRs. Here, we characterise a carbon starvation-induced GPCR-mediated glucose sensing mechanism in A. nidulans. This includes two class V (gprH and gprI) and one class VII (gprM) GPCRs, which in response to glucose promote cAMP signalling, germination and hyphal growth, while negatively regulating sexual development in a light-dependent manner. We demonstrate that GprH regulates sexual development via influencing VeA activity, a key light-dependent regulator of fungal morphogenesis and secondary metabolism. We show that GprH and GprM are light-independent negative regulators of sterigmatocystin biosynthesis. Additionally, we reveal the epistatic interactions between the three GPCRs in regulating sexual development and sterigmatocystin production. In conclusion, GprH, GprM and GprI constitute a novel carbon starvation-induced glucose sensing mechanism that functions upstream of cAMP-PKA signalling to regulate fungal development and mycotoxin production.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Aspergillus nidulans/fisiología , Proteínas Fúngicas/metabolismo , Luz , Receptores Acoplados a Proteínas G/metabolismo , Carbono/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Glucosa/metabolismo , Morfogénesis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación , Esterigmatocistina/biosíntesis
8.
PLoS One ; 14(4): e0216092, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31026268

RESUMEN

The fungus Aspergillus fumigatus is a ubiquitous opportunistic human pathogen capable of causing a life-threatening disease called invasive aspergillosis, or IA, with an associated 40-90% mortality rate in immunocompromised patients. Of the approximately 250 species known in the genus Aspergillus, A. fumigatus is responsible for up to 90% of IA infections. This study focuses on examining the role of the putative polysaccharide synthase cpsA gene in A. fumigatus virulence. Additionally, we evaluated its role in cellular processes that influence invasion and colonization of host tissue. Importantly, our results support that cpsA is indispensable for virulence in A. fumigatus infection of non-neutropenic hosts. Our study revealed that cpsA affects growth and sporulation in this fungus. Absence of cpsA resulted in a drastic reduction in conidiation, and forced overexpression of cpsA produced partially fluffy colonies with low sporulation levels, suggesting that wild-type cpsA expression levels are required for proper conidiation in this fungus. This study also showed that cpsA is necessary for normal cell wall integrity and composition. Furthermore, both deletion and overexpression of cpsA resulted in a reduction in the ability of A. fumigatus to adhere to surfaces, and caused increased sensitivity to oxidative stress. Interestingly, metabolomics analysis indicated that cpsA affects A. fumigatus secondary metabolism. Forced overexpression of cpsA resulted in a statistically significant difference in the production of fumigaclavine A, fumigaclavine B, fumigaclavine C, verruculogen TR-2, and tryprostatin A.


Asunto(s)
Aspergillus fumigatus/enzimología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Glicosiltransferasas/metabolismo , Adhesividad , Animales , Aspergillus fumigatus/crecimiento & desarrollo , Pared Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Metabolómica , Ratones Endogámicos ICR , Presión Osmótica , Estrés Oxidativo , Esporas Fúngicas/fisiología , Virulencia
9.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30635379

RESUMEN

Aspergillus flavus is an opportunistic fungal plant and human pathogen and a producer of mycotoxins, including aflatoxin B1 (AFB1). As part of our ongoing studies to elucidate the biological functions of the A. flavusrtfA gene, we examined its role in the pathogenicity of both plant and animal model systems. rtfA encodes a putative RNA polymerase II (Pol II) transcription elongation factor previously characterized in Saccharomyces cerevisiae, Aspergillus nidulans, and Aspergillus fumigatus, where it was shown to regulate several important cellular processes, including morphogenesis and secondary metabolism. In addition, an initial study in A. flavus indicated that rtfA also influences development and production of AFB1; however, its effect on virulence is unknown. The current study reveals that the rtfA gene is indispensable for normal pathogenicity in plants when using peanut seed as an infection model, as well as in animals, as shown in the Galleria mellonella infection model. Interestingly, rtfA positively regulates several processes known to be necessary for successful fungal invasion and colonization of host tissue, such as adhesion to surfaces, protease and lipase activity, cell wall composition and integrity, and tolerance to oxidative stress. In addition, metabolomic analysis revealed that A. flavusrtfA affects the production of several secondary metabolites, including AFB1, aflatrem, leporins, aspirochlorine, ditryptophenaline, and aflavinines, supporting a role of rtfA as a global regulator of secondary metabolism. Heterologous complementation of an A. flavusrtfA deletion strain with rtfA homologs from A. nidulans or S. cerevisiae fully rescued the wild-type phenotype, indicating that these rtfA homologs are functionally conserved among these three species.IMPORTANCE In this study, the epigenetic global regulator rtfA, which encodes a putative RNA-Pol II transcription elongation factor-like protein, was characterized in the mycotoxigenic and opportunistic pathogen A. flavus Specifically, its involvement in A. flavus pathogenesis in plant and animal models was studied. Here, we show that rtfA positively regulates A. flavus virulence in both models. Furthermore, rtfA-dependent effects on factors necessary for successful invasion and colonization of host tissue by A. flavus were also assessed. Our study indicates that rtfA plays a role in A. flavus adherence to surfaces, hydrolytic activity, normal cell wall formation, and response to oxidative stress. This study also revealed a profound effect of rtfA on the metabolome of A. flavus, including the production of potent mycotoxins.


Asunto(s)
Arachis/microbiología , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidad , Proteínas Fúngicas/metabolismo , Mariposas Nocturnas/microbiología , Enfermedades de las Plantas/microbiología , Factores de Elongación Transcripcional/metabolismo , Aflatoxina B1/biosíntesis , Animales , Aspergillus flavus/genética , Aspergillus flavus/crecimiento & desarrollo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Metabolismo Secundario , Factores de Elongación Transcripcional/genética , Virulencia
10.
G3 (Bethesda) ; 9(1): 167-178, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30425054

RESUMEN

In filamentous fungi, homeobox proteins are conserved transcriptional regulators described to control conidiogenesis and fruiting body formation. Eight homeobox (hbx) genes are found in the genome of the aflatoxin-producing ascomycete, Aspergillus flavus While loss-of-function of seven of the eight genes had little to no effect on fungal growth and development, disruption of hbx1, resulted in aconidial colonies and lack of sclerotial production. Furthermore, the hbx1 mutant was unable to produce aflatoxins B1 and B2, cyclopiazonic acid and aflatrem. In the present study, hbx1 transcriptome analysis revealed that hbx1 has a broad effect on A. flavus gene expression, and the effect of hbx1 increases overtime, impacting more than five thousand protein-coding genes. Among the affected genes, those in the category of secondary metabolism (SM), followed by that of cellular transport, were the most affected. Specifically, regarding the effect of hbx1 on SM, we found that genes in 44 SM gene clusters where upregulated while 49 were downregulated in the absence of hbx1, including genes in the SM clusters responsible for the synthesis of asparasone, piperazine and aflavarin, all known to be associated with sclerotia. In addition, our study revealed that hbx1 affects the expression of other transcription factor genes involved in development, including the conidiation central regulatory pathway and flb genes.


Asunto(s)
Aspergillus flavus/genética , Proteínas Fúngicas/genética , Esporas Fúngicas/genética , Activación Transcripcional/genética , Aflatoxinas/biosíntesis , Aflatoxinas/genética , Antraquinonas/metabolismo , Aspergillus flavus/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Indoles/metabolismo , Familia de Multigenes/genética , Metabolismo Secundario/genética , Esporas Fúngicas/crecimiento & desarrollo
11.
Genes (Basel) ; 9(12)2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30477161

RESUMEN

The genus Aspergillus includes important plant pathogens, opportunistic human pathogens and mycotoxigenic fungi. In these organisms, secondary metabolism and morphogenesis are subject to a complex genetic regulation. Here we functionally characterized urdA, a gene encoding a putative helix-loop-helix (HLH)-type regulator in the model fungus Aspergillus nidulans. urdA governs asexual and sexual development in strains with a wild-type veA background; absence of urdA resulted in severe morphological alterations, with a significant reduction of conidial production and an increase in cleistothecial formation, even in the presence of light, a repressor of sex. The positive effect of urdA on conidiation is mediated by the central developmental pathway (CDP). However, brlA overexpression was not sufficient to restore wild-type conidiation in the ΔurdA strain. Heterologous complementation of ΔurdA with the putative Aspergillus flavus urdA homolog also failed to rescue conidiation wild-type levels, indicating that both genes perform different functions, probably reflected by key sequence divergence. UrdA also represses sterigmatocystin (ST) toxin production in the presence of light by affecting the expression of aflR, the activator of the ST gene cluster. Furthermore, UrdA regulates the production of several unknown secondary metabolites, revealing a broader regulatory scope. Interestingly, UrdA affects the abundance and distribution of the VeA protein in hyphae, and our genetics studies indicated that veA appears epistatic to urdA regarding ST production. However, the distinct fluffy phenotype of the ΔurdAΔveA double mutant suggests that both regulators conduct independent developmental roles. Overall, these results suggest that UrdA plays a pivotal role in the coordination of development and secondary metabolism in A. nidulans.

12.
Food Saf (Tokyo) ; 6(1): 7-32, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32231944

RESUMEN

Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of these secondary metabolites have been identified from A. flavus cultures, analysis of the genome has predicted the existence of at least 56 secondary metabolite gene clusters. Many of these gene clusters are not expressed during growth of the fungus on standard laboratory media. This presents researchers with a major challenge of devising novel strategies to manipulate the fungus and its genome so as to activate secondary metabolite gene expression and allow identification of associated cluster metabolites. In this review, we discuss the genetic, biochemical and bioinformatic methods that are being used to identify previously uncharacterized secondary metabolite gene clusters and their associated metabolites. It is important to identify as many of these compounds as possible to determine their bioactivity with respect to fungal development, survival, virulence and especially with respect to any potential synergistic toxic effects with aflatoxin.

13.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247055

RESUMEN

The opportunistic plant-pathogenic fungus Aspergillus flavus produces carcinogenic mycotoxins termed aflatoxins (AF). Aflatoxin contamination of agriculturally important crops, such as maize, peanut, sorghum, and tree nuts, is responsible for serious adverse health and economic impacts worldwide. In order to identify possible genetic targets to reduce AF contamination, we have characterized the artA gene, encoding a putative 14-3-3 homolog in A. flavus The artA deletion mutant presents a slight decrease in vegetative growth and alterations in morphological development and secondary metabolism. Specifically, artA affects conidiation, and this effect is influenced by the type of substrate and culture condition. In addition, normal levels of artA are required for sclerotial development. Importantly, artA negatively regulates AF production as well as the concomitant expression of genes in the AF gene cluster. An increase in AF is also observed in seeds infected with the A. flavus strain lacking artA Furthermore, the expression of other secondary metabolite genes is also artA dependent, including genes in the cyclopiazonic acid (CPA) and ustiloxin gene clusters, in this agriculturally important fungus.IMPORTANCE In the current study, artA, which encodes a 14-3-3 homolog, was characterized in the agriculturally and medically important fungus Aspergillus flavus, specifically, its possible role governing sporulation, formation of resistant structures, and secondary metabolism. The highly conserved artA is necessary for normal fungal morphogenesis in an environment-dependent manner, affecting the balance between production of conidiophores and the formation of resistant structures that are necessary for the dissemination and survival of this opportunistic pathogen. This study reports a 14-3-3 protein affecting secondary metabolism in filamentous fungi. Importantly, artA regulates the biosynthesis of the potent carcinogenic compound aflatoxin B1 (AFB1) as well as the production of other secondary metabolites.


Asunto(s)
Proteínas 14-3-3/genética , Aflatoxina B1/metabolismo , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Proteínas 14-3-3/metabolismo , Aflatoxina B1/genética , Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Indoles/metabolismo , Familia de Multigenes , Filogenia , Metabolismo Secundario , Análisis de Secuencia de ADN , Esporas Fúngicas/genética
14.
PLoS One ; 12(4): e0176702, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28453536

RESUMEN

Invasive aspergillosis by Aspergillus fumigatus is a leading cause of infection-related mortality in immune-compromised patients. In order to discover potential genetic targets to control A. fumigatus infections we characterized rtfA, a gene encoding a putative RNA polymerase II transcription elongation factor-like protein. Our recent work has shown that the rtfA ortholog in the model fungus Aspergillus nidulans regulates morphogenesis and secondary metabolism. The present study on the opportunistic pathogen A. fumigatus rtfA gene revealed that this gene influences fungal growth and conidiation, as well as production of the secondary metabolites tryptoquivaline F, pseurotin A, fumiquinazoline C, festuclavine, and fumigaclavines A, B and C. Additionally, rtfA influences protease activity levels, the sensitivity to oxidative stress and adhesion capacity, all factors important in pathogenicity. Furthermore, rtfA was shown to be indispensable for normal virulence using Galleria mellonella as well as murine infection model systems.


Asunto(s)
Aspergillus fumigatus/fisiología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Metabolismo Secundario , Factores de Transcripción/metabolismo , Animales , Adhesión Celular/fisiología , Pared Celular/metabolismo , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/genética , Ingeniería Genética , Ratones Endogámicos ICR , Mariposas Nocturnas , Estrés Oxidativo/fisiología , Péptido Hidrolasas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Factores de Transcripción/genética , Virulencia/fisiología
15.
Mol Microbiol ; 105(1): 1-24, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370587

RESUMEN

The model fungus Aspergillus nidulans synthesizes numerous secondary metabolites, including sterigmatocystin (ST). The production of this toxin is positively controlled by the global regulator veA. In the absence of veA (ΔveA), ST biosynthesis is blocked. Previously, we performed random mutagenesis in a ΔveA strain and identified revertant mutants able to synthesize ST, among them RM1. Complementation of RM1 with a genomic library revealed that the mutation occurred in a gene designated as cpsA. While in the ΔveA genetic background cpsA deletion restores ST production, in a veA wild-type background absence of cpsA reduces and delays ST biosynthesis decreasing the expression of ST genes. Furthermore, cpsA is also necessary for the production of other secondary metabolites, including penicillin, affecting the expression of PN genes. In addition, cpsA is necessary for normal asexual and sexual development. Chemical and microscopy analyses revealed that CpsA is found in cytoplasmic vesicles and it is required for normal cell wall composition and integrity, affecting adhesion capacity and oxidative stress sensitivity. The conservation of cpsA in Ascomycetes suggests that cpsA homologs might have similar roles in other fungal species.


Asunto(s)
Aspergillus nidulans/metabolismo , Carboxipeptidasas/metabolismo , Secuencia de Aminoácidos , Ascomicetos/metabolismo , Aspergillus nidulans/genética , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Morfogénesis , Mutagénesis , Mutación , Micotoxinas/biosíntesis , Micotoxinas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Esterigmatocistina/biosíntesis
16.
G3 (Bethesda) ; 6(12): 4023-4033, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27694115

RESUMEN

Sensing and responding to environmental cues is critical to the lifestyle of filamentous fungi. How environmental variation influences fungi to produce a wide diversity of ecologically important secondary metabolites (SMs) is not well understood. To address this question, we first examined changes in global gene expression of the opportunistic human pathogen, Aspergillus fumigatus, after exposure to different temperature conditions. We found that 11 of the 37 SM gene clusters in A. fumigatus were expressed at higher levels at 30° than at 37°. We next investigated the role of the light-responsive Velvet complex in environment-dependent gene expression by examining temperature-dependent transcription profiles in the absence of two key members of the Velvet protein complex, VeA and LaeA We found that the 11 temperature-regulated SM gene clusters required VeA at 37° and LaeA at both 30 and 37° for wild-type levels of expression. Interestingly, four SM gene clusters were regulated by VeA at 37° but not at 30°, and two additional ones were regulated by VeA at both temperatures but were substantially less so at 30°, indicating that the role of VeA and, more generally of the Velvet complex, in the regulation of certain SM gene clusters is temperature-dependent. Our findings support the hypothesis that fungal secondary metabolism is regulated by an intertwined network of transcriptional regulators responsive to multiple environmental factors.


Asunto(s)
Aspergillus/genética , Aspergillus/metabolismo , Regulación Fúngica de la Expresión Génica , Metabolismo Secundario , Temperatura , Análisis por Conglomerados , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes
17.
PLoS One ; 11(5): e0155575, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27213959

RESUMEN

Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen.


Asunto(s)
Aspergillus flavus/crecimiento & desarrollo , Aspergillus flavus/genética , Regulación del Desarrollo de la Expresión Génica , Proteína-Arginina N-Metiltransferasas/fisiología , Metabolismo Secundario/genética , Secuencia de Aminoácidos , Aspergillus flavus/metabolismo , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos , Filogenia , Proteína-Arginina N-Metiltransferasas/genética , Análisis de Secuencia de ADN , Homología de Secuencia
19.
Appl Microbiol Biotechnol ; 100(11): 5029-41, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27020290

RESUMEN

The filamentous fungus Aspergillus flavus is an agriculturally important opportunistic plant pathogen that produces potent carcinogenic compounds called aflatoxins. We identified the A. flavus rtfA gene, the ortholog of rtf1 in Saccharomyces cerevisiae and rtfA in Aspergillus nidulans. Interestingly, rtfA has multiple cellular roles in this mycotoxin-producing fungus. In this study, we show that rtfA regulates conidiation. The rtfA deletion mutant presented smaller conidiophores with significantly reduced conidial production compared to the wild-type strain. The absence of rtfA also resulted in a significant decrease or lack of sclerotial production under conditions that allowed abundant production of these resistance structures in the wild type. Importantly, the deletion of rtfA notably reduced the production of aflatoxin B1, indicating that rtfA is a regulator of mycotoxin biosynthesis in A. flavus. In addition, the deletion rtfA also altered the production of several unknown secondary metabolites indicating a broader regulatory scope. Furthermore, our study revealed that rtfA controls the expression of the global regulators veA and laeA, which further influence morphogenesis and secondary metabolism in A. flavus.


Asunto(s)
Aspergillus flavus/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Factores de Elongación de Péptidos/genética , ARN Polimerasa II/genética , Aflatoxina B1/metabolismo , Aspergillus flavus/metabolismo , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Genes Fúngicos , Factores de Elongación de Péptidos/metabolismo , ARN Polimerasa II/metabolismo , Metabolismo Secundario , Esporas Fúngicas/metabolismo
20.
Toxins (Basel) ; 8(1)2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26805883

RESUMEN

Aspergillus flavus produces a variety of toxic secondary metabolites; among them, the aflatoxins (AFs) are the most well known. These compounds are highly mutagenic and carcinogenic, particularly AFB1. A. flavus is capable of colonizing a number of economically-important crops, such as corn, cotton, peanut and tree nuts, and contaminating them with AFs. Molecular genetic studies in A. flavus could identify novel gene targets for use in strategies to reduce AF contamination and its adverse impact on food and feed supplies worldwide. In the current study, we investigated the role of the master transcription factor gene mtfA in A. flavus. Our results revealed that forced overexpression of mtfA results in a drastic decrease or elimination of several secondary metabolites, among them AFB1. The reduction in AFB1 was accompanied by a decrease in aflR expression. Furthermore, mtfA also regulates development; conidiation was influenced differently by this gene depending on the type of colonized substrate. In addition to its effect on conidiation, mtfA is necessary for the normal maturation of sclerotia. Importantly, mtfA positively affects the pathogenicity of A. flavus when colonizing peanut seeds. AF production in colonized seeds was decreased in the deletion mtfA strain and particularly in the overexpression strain, where only trace amounts were detected. Interestingly, a more rapid colonization of the seed tissue occurred when mtfA was overexpressed, coinciding with an increase in lipase activity and faster maceration of the oily part of the seed.


Asunto(s)
Aflatoxina B1/biosíntesis , Aspergillus flavus , Proteínas Fúngicas/genética , Factores de Transcripción/genética , Aflatoxina B1/análisis , Amilasas/metabolismo , Arachis/microbiología , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidad , Aspergillus flavus/fisiología , Ergosterol/análisis , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Péptido Hidrolasas/metabolismo , Semillas/química , Semillas/microbiología , Esporas Fúngicas , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...