Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
ArXiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38979487

RESUMEN

Multiscale models provide a unique tool for studying complex processes that study events occurring at different scales across space and time. In the context of biological systems, such models can simulate mechanisms happening at the intracellular level such as signaling, and at the extracellular level where cells communicate and coordinate with other cells. They aim to understand the impact of genetic or environmental deregulation observed in complex diseases, describe the interplay between a pathological tissue and the immune system, and suggest strategies to revert the diseased phenotypes. The construction of these multiscale models remains a very complex task, including the choice of the components to consider, the level of details of the processes to simulate, or the fitting of the parameters to the data. One additional difficulty is the expert knowledge needed to program these models in languages such as C++ or Python, which may discourage the participation of non-experts. Simplifying this process through structured description formalisms - coupled with a graphical interface - is crucial in making modeling more accessible to the broader scientific community, as well as streamlining the process for advanced users. This article introduces three examples of multiscale models which rely on the framework PhysiBoSS, an add-on of PhysiCell that includes intracellular descriptions as continuous time Boolean models to the agent-based approach. The article demonstrates how to easily construct such models, relying on PhysiCell Studio, the PhysiCell Graphical User Interface. A step-by-step tutorial is provided as a Supplementary Material and all models are provided at: https://physiboss.github.io/tutorial/.

2.
PLoS Comput Biol ; 20(7): e1011620, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976751

RESUMEN

Boolean networks are largely employed to model the qualitative dynamics of cell fate processes by describing the change of binary activation states of genes and transcription factors with time. Being able to bridge such qualitative states with quantitative measurements of gene expressions in cells, as scRNA-seq, is a cornerstone for data-driven model construction and validation. On one hand, scRNA-seq binarisation is a key step for inferring and validating Boolean models. On the other hand, the generation of synthetic scRNA-seq data from baseline Boolean models provides an important asset to benchmark inference methods. However, linking characteristics of scRNA-seq datasets, including dropout events, with Boolean states is a challenging task. We present scBoolSeq, a method for the bidirectional linking of scRNA-seq data and Boolean activation state of genes. Given a reference scRNA-seq dataset, scBoolSeq computes statistical criteria to classify the empirical gene pseudocount distributions as either unimodal, bimodal, or zero-inflated, and fit a probabilistic model of dropouts, with gene-dependent parameters. From these learnt distributions, scBoolSeq can perform both binarisation of scRNA-seq datasets, and generate synthetic scRNA-seq datasets from Boolean traces, as issued from Boolean networks, using biased sampling and dropout simulation. We present a case study demonstrating the application of scBoolSeq's binarisation scheme in data-driven model inference. Furthermore, we compare synthetic scRNA-seq data generated by scBoolSeq with BoolODE's, data for the same Boolean Network model. The comparison shows that our method better reproduces the statistics of real scRNA-seq datasets, such as the mean-variance and mean-dropout relationships while exhibiting clearly defined trajectories in two-dimensional projections of the data.

3.
iScience ; 27(2): 108859, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303723

RESUMEN

Psoriasis arises from complex interactions between keratinocytes and immune cells, leading to uncontrolled inflammation, immune hyperactivation, and a perturbed keratinocyte life cycle. Despite the availability of drugs for psoriasis management, the disease remains incurable. Treatment response variability calls for new tools and approaches to comprehend the mechanisms underlying disease development. We present a Boolean multiscale population model that captures the dynamics of cell-specific phenotypes in psoriasis, integrating discrete logical formalism and population dynamics simulations. Through simulations and network analysis, the model predictions suggest that targeting neutrophil activation in conjunction with inhibition of either prostaglandin E2 (PGE2) or STAT3 shows promise comparable to interleukin-17 (IL-17) inhibition, one of the most effective treatment options for moderate and severe cases. Our findings underscore the significance of considering complex intercellular interactions and intracellular signaling in psoriasis and highlight the importance of computational approaches in unraveling complex biological systems for drug target identification.

4.
NPJ Syst Biol Appl ; 10(1): 8, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242871

RESUMEN

The efficiency of analyzing high-throughput data in systems biology has been demonstrated in numerous studies, where molecular data, such as transcriptomics and proteomics, offers great opportunities for understanding the complexity of biological processes. One important aspect of data analysis in systems biology is the shift from a reductionist approach that focuses on individual components to a more integrative perspective that considers the system as a whole, where the emphasis shifted from differential expression of individual genes to determining the activity of gene sets. Here, we present the rROMA software package for fast and accurate computation of the activity of gene sets with coordinated expression. The rROMA package incorporates significant improvements in the calculation algorithm, along with the implementation of several functions for statistical analysis and visualizing results. These additions greatly expand the package's capabilities and offer valuable tools for data analysis and interpretation. It is an open-source package available on github at: www.github.com/sysbio-curie/rROMA . Based on publicly available transcriptomic datasets, we applied rROMA to cystic fibrosis, highlighting biological mechanisms potentially involved in the establishment and progression of the disease and the associated genes. Results indicate that rROMA can detect disease-related active signaling pathways using transcriptomic and proteomic data. The results notably identified a significant mechanism relevant to cystic fibrosis, raised awareness of a possible bias related to cell culture, and uncovered an intriguing gene that warrants further investigation.


Asunto(s)
Fibrosis Quística , Proteómica , Humanos , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Biología de Sistemas/métodos
5.
NPJ Syst Biol Appl ; 9(1): 54, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903760

RESUMEN

In systems biology, mathematical models and simulations play a crucial role in understanding complex biological systems. Different modelling frameworks are employed depending on the nature and scales of the system under study. For instance, signalling and regulatory networks can be simulated using Boolean modelling, whereas multicellular systems can be studied using agent-based modelling. Herein, we present PhysiBoSS 2.0, a hybrid agent-based modelling framework that allows simulating signalling and regulatory networks within individual cell agents. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS 1.0 and was conceived as an add-on that expands the PhysiCell functionalities by enabling the simulation of intracellular cell signalling using MaBoSS while keeping a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 also expands the set of functionalities offered to the users, including custom models and cell specifications, mechanistic submodels of substrate internalisation and detailed control over simulation parameters. Together with PhysiBoSS 2.0, we introduce PCTK, a Python package developed for handling and processing simulation outputs, and generating summary plots and 3D renders. PhysiBoSS 2.0 allows studying the interplay between the microenvironment, the signalling pathways that control cellular processes and population dynamics, suitable for modelling cancer. We show different approaches for integrating Boolean networks into multi-scale simulations using strategies to study the drug effects and synergies in models of cancer cell lines and validate them using experimental data. PhysiBoSS 2.0 is open-source and publicly available on GitHub with several repositories of accompanying interoperable tools.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Simulación por Computador , Transducción de Señal , Modelos Teóricos , Análisis de Sistemas , Microambiente Tumoral
7.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289551

RESUMEN

MOTIVATION: Mathematical models of biological processes altered in cancer are built using the knowledge of complex networks of signaling pathways, detailing the molecular regulations inside different cell types, such as tumor cells, immune and other stromal cells. If these models mainly focus on intracellular information, they often omit a description of the spatial organization among cells and their interactions, and with the tumoral microenvironment. RESULTS: We present here a model of tumor cell invasion simulated with PhysiBoSS, a multiscale framework, which combines agent-based modeling and continuous time Markov processes applied on Boolean network models. With this model, we aim to study the different modes of cell migration and to predict means to block it by considering not only spatial information obtained from the agent-based simulation but also intracellular regulation obtained from the Boolean model.Our multiscale model integrates the impact of gene mutations with the perturbation of the environmental conditions and allows the visualization of the results with 2D and 3D representations. The model successfully reproduces single and collective migration processes and is validated on published experiments on cell invasion. In silico experiments are suggested to search for possible targets that can block the more invasive tumoral phenotypes. AVAILABILITY AND IMPLEMENTATION: https://github.com/sysbio-curie/Invasion_model_PhysiBoSS.


Asunto(s)
Modelos Biológicos , Modelos Teóricos , Humanos , Simulación por Computador , Transducción de Señal/genética , Invasividad Neoplásica , Microambiente Tumoral
8.
Comput Struct Biotechnol J ; 20: 5661-5671, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284705

RESUMEN

As a result of the development of experimental technologies and the accumulation of data, biological and molecular processes can be described as complex networks of signaling pathways. These networks are often directed and signed, where nodes represent entities (genes/proteins) and arrows interactions. They are translated into mathematical models by adding a dynamic layer onto them. Such mathematical models help to understand and interpret non-intuitive experimental observations and to anticipate the response to external interventions such as drug effects on phenotypes. Several frameworks for modeling signaling pathways exist. The choice of the appropriate framework is often driven by the experimental context. In this review, we present MaBoSS, a tool based on Boolean modeling using a continuous time approach, which predicts time-dependent probabilities of entities in different biological contexts. MaBoSS was initially built to model the intracellular signaling in non-interacting homogeneous cell populations. MaBoSS was then adapted to model heterogeneous cell populations (EnsembleMaBoSS) by considering families of models rather than a unique model. To account for more complex questions, MaBoSS was extended to simulate dynamical interacting populations (UPMaBoSS), with a precise spatial distribution (PhysiBoSS). To illustrate all these levels of description, we show how each of these tools can be used with a running example of a simple model of cell fate decisions. Finally, we present practical applications to cancer biology and studies of the immune response.

9.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35671510

RESUMEN

Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement. Here, we present recent efforts toward a common framework for annotated, accessible, reproducible and interoperable computational models in biology, and discuss key challenges of the field.


Asunto(s)
Biología Computacional , Biología de Sistemas , Simulación por Computador , Reproducibilidad de los Resultados
10.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524558

RESUMEN

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Asunto(s)
Simulación por Computador , Programas Informáticos , Humanos , Bioingeniería , Modelos Biológicos , Sistema de Registros , Investigadores
11.
Front Mol Biosci ; 9: 800152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309516

RESUMEN

Mathematical modeling aims at understanding the effects of biological perturbations, suggesting ways to intervene and to reestablish proper cell functioning in diseases such as cancer or in autoimmune disorders. This is a difficult task for obvious reasons: the level of details needed to describe the intra-cellular processes involved, the numerous interactions between cells and cell types, and the complex dynamical properties of such populations where cells die, divide and interact constantly, to cite a few. Another important difficulty comes from the spatial distribution of these cells, their diffusion and motility. All of these aspects cannot be easily resolved in a unique mathematical model or with a unique formalism. To cope with some of these issues, we introduce here a novel framework, UPMaBoSS (for Update Population MaBoSS), dedicated to modeling dynamic populations of interacting cells. We rely on the preexisting tool MaBoSS, which enables probabilistic simulations of cellular networks. A novel software layer is added to account for cell interactions and population dynamics, but without considering the spatial dimension. This modeling approach can be seen as an intermediate step towards more complex spatial descriptions. We illustrate our methodology by means of a case study dealing with TNF-induced cell death. Interestingly, the simulation of cell population dynamics with UPMaBoSS reveals a mechanism of resistance triggered by TNF treatment. Relatively easy to encode, UPMaBoSS simulations require only moderate computational power and execution time. To ease the reproduction of simulations, we provide several Jupyter notebooks that can be accessed within the CoLoMoTo Docker image, which contains all software and models used for this study.

12.
Elife ; 112022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35164900

RESUMEN

Prostate cancer is the second most occurring cancer in men worldwide. To better understand the mechanisms of tumorigenesis and possible treatment responses, we developed a mathematical model of prostate cancer which considers the major signalling pathways known to be deregulated. We personalised this Boolean model to molecular data to reflect the heterogeneity and specific response to perturbations of cancer patients. A total of 488 prostate samples were used to build patient-specific models and compared to available clinical data. Additionally, eight prostate cell line-specific models were built to validate our approach with dose-response data of several drugs. The effects of single and combined drugs were tested in these models under different growth conditions. We identified 15 actionable points of interventions in one cell line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive power of our personalised Boolean models and illustrate how they can be used for precision oncology.


Asunto(s)
Medicina de Precisión , Neoplasias de la Próstata , Carcinogénesis , Proteínas HSP90 de Choque Térmico , Humanos , Masculino , Medicina de Precisión/métodos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Transducción de Señal
13.
Front Mol Biosci ; 8: 754444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888352

RESUMEN

WebMaBoSS is an easy-to-use web interface for conversion, storage, simulation and analysis of Boolean models that allows to get insight from these models without any specific knowledge of modeling or coding. It relies on an existing software, MaBoSS, which simulates Boolean models using a stochastic approach: it applies continuous time Markov processes over the Boolean network. It was initially built to fill the gap between Boolean and continuous formalisms, i.e., providing semi-quantitative results using a simple representation with a minimum number of parameters to fit. The goal of WebMaBoSS is to simplify the use and the analysis of Boolean models coping with two main issues: 1) the simulation of Boolean models of intracellular processes with MaBoSS, or any modeling tool, may appear as non-intuitive for non-experts; 2) the simulation of already-published models available in current model databases (e.g., Cell Collective, BioModels) may require some extra steps to ensure compatibility with modeling tools such as MaBoSS. With WebMaBoSS, new models can be created or imported directly from existing databases. They can then be simulated, modified and stored in personal folders. Model simulations are performed easily, results visualized interactively, and figures can be exported in a preferred format. Extensive model analyses such as mutant screening or parameter sensitivity can also be performed. For all these tasks, results are stored and can be subsequently filtered to look for specific outputs. This web interface can be accessed at the address: https://maboss.curie.fr/webmaboss/ and deployed locally using docker. This application is open-source under LGPL license, and available at https://github.com/sysbio-curie/WebMaBoSS.

14.
Bioinformatics ; 37(21): 3702-3706, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34179955

RESUMEN

Computational models of biological systems can exploit a broad range of rapidly developing approaches, including novel experimental approaches, bioinformatics data analysis, emerging modelling paradigms, data standards and algorithms. A discussion about the most recent advances among experts from various domains is crucial to foster data-driven computational modelling and its growing use in assessing and predicting the behaviour of biological systems. Intending to encourage the development of tools, approaches and predictive models, and to deepen our understanding of biological systems, the Community of Special Interest (COSI) was launched in Computational Modelling of Biological Systems (SysMod) in 2016. SysMod's main activity is an annual meeting at the Intelligent Systems for Molecular Biology (ISMB) conference, which brings together computer scientists, biologists, mathematicians, engineers, computational and systems biologists. In the five years since its inception, SysMod has evolved into a dynamic and expanding community, as the increasing number of contributions and participants illustrate. SysMod maintains several online resources to facilitate interaction among the community members, including an online forum, a calendar of relevant meetings and a YouTube channel with talks and lectures of interest for the modelling community. For more than half a decade, the growing interest in computational systems modelling and multi-scale data integration has inspired and supported the SysMod community. Its members get progressively more involved and actively contribute to the annual COSI meeting and several related community workshops and meetings, focusing on specific topics, including particular techniques for computational modelling or standardisation efforts.


Asunto(s)
Biología Computacional , Biología de Sistemas , Humanos , Simulación por Computador , Algoritmos , Análisis de Datos
15.
PLoS Comput Biol ; 17(1): e1007900, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507915

RESUMEN

The study of response to cancer treatments has benefited greatly from the contribution of different omics data but their interpretation is sometimes difficult. Some mathematical models based on prior biological knowledge of signaling pathways facilitate this interpretation but often require fitting of their parameters using perturbation data. We propose a more qualitative mechanistic approach, based on logical formalism and on the sole mapping and interpretation of omics data, and able to recover differences in sensitivity to gene inhibition without model training. This approach is showcased by the study of BRAF inhibition in patients with melanomas and colorectal cancers who experience significant differences in sensitivity despite similar omics profiles. We first gather information from literature and build a logical model summarizing the regulatory network of the mitogen-activated protein kinase (MAPK) pathway surrounding BRAF, with factors involved in the BRAF inhibition resistance mechanisms. The relevance of this model is verified by automatically assessing that it qualitatively reproduces response or resistance behaviors identified in the literature. Data from over 100 melanoma and colorectal cancer cell lines are then used to validate the model's ability to explain differences in sensitivity. This generic model is transformed into personalized cell line-specific logical models by integrating the omics information of the cell lines as constraints of the model. The use of mutations alone allows personalized models to correlate significantly with experimental sensitivities to BRAF inhibition, both from drug and CRISPR targeting, and even better with the joint use of mutations and RNA, supporting multi-omics mechanistic models. A comparison of these untrained models with learning approaches highlights similarities in interpretation and complementarity depending on the size of the datasets. This parsimonious pipeline, which can easily be extended to other biological questions, makes it possible to explore the mechanistic causes of the response to treatment, on an individualized basis.


Asunto(s)
Neoplasias Colorrectales , Melanoma , Modelación Específica para el Paciente , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sistemas CRISPR-Cas , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Biología Computacional , Terapia Genética , Humanos , Aprendizaje Automático , Melanoma/genética , Melanoma/metabolismo , Melanoma/terapia , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos
16.
Brief Bioinform ; 22(2): 1848-1859, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32313939

RESUMEN

The fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled 'Annotation and curation of computational models in biology', organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements.


Asunto(s)
Biología Computacional/métodos , Modelos Biológicos , Guías de Práctica Clínica como Asunto , Reproducibilidad de los Resultados
17.
Front Mol Biosci ; 8: 793912, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35178429

RESUMEN

Cell cycle is a biological process underlying the existence and propagation of life in time and space. It has been an object for mathematical modeling for long, with several alternative mechanistic modeling principles suggested, describing in more or less details the known molecular mechanisms. Recently, cell cycle has been investigated at single cell level in snapshots of unsynchronized cell populations, exploiting the new methods for transcriptomic and proteomic molecular profiling. This raises a need for simplified semi-phenomenological cell cycle models, in order to formalize the processes underlying the cell cycle, at a higher abstracted level. Here we suggest a modeling framework, recapitulating the most important properties of the cell cycle as a limit trajectory of a dynamical process characterized by several internal states with switches between them. In the simplest form, this leads to a limit cycle trajectory, composed by linear segments in logarithmic coordinates describing some extensive (depending on system size) cell properties. We prove a theorem connecting the effective embedding dimensionality of the cell cycle trajectory with the number of its linear segments. We also develop a simplified kinetic model with piecewise-constant kinetic rates describing the dynamics of lumps of genes involved in S-phase and G2/M phases. We show how the developed cell cycle models can be applied to analyze the available single cell datasets and simulate certain properties of the observed cell cycle trajectories. Based on our model, we can predict with good accuracy the cell line doubling time from the length of cell cycle trajectory.

18.
Genome Biol ; 21(1): 302, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317623

RESUMEN

BACKGROUND: Tumor-specific genomic aberrations are routinely determined by high-throughput genomic measurements. It remains unclear how complex genome alterations affect molecular networks through changing protein levels and consequently biochemical states of tumor tissues. RESULTS: Here, we investigate the propagation of genomic effects along the axis of gene expression during prostate cancer progression. We quantify genomic, transcriptomic, and proteomic alterations based on 105 prostate samples, consisting of benign prostatic hyperplasia regions and malignant tumors, from 39 prostate cancer patients. Our analysis reveals the convergent effects of distinct copy number alterations impacting on common downstream proteins, which are important for establishing the tumor phenotype. We devise a network-based approach that integrates perturbations across different molecular layers, which identifies a sub-network consisting of nine genes whose joint activity positively correlates with increasingly aggressive tumor phenotypes and is predictive of recurrence-free survival. Further, our data reveal a wide spectrum of intra-patient network effects, ranging from similar to very distinct alterations on different molecular layers. CONCLUSIONS: This study uncovers molecular networks with considerable convergent alterations across tumor sites and patients. It also exposes a diversity of network effects: we could not identify a single sub-network that is perturbed in all high-grade tumor regions.


Asunto(s)
Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Biomarcadores de Tumor/genética , Variaciones en el Número de Copia de ADN , Heterogeneidad Genética , Genómica , Humanos , Masculino , Mutación , Fenotipo , Próstata/patología , Proteogenómica , Proteoma , Proteómica , ARN Mensajero , Transcriptoma
19.
Front Physiol ; 11: 590479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281620

RESUMEN

As opposed to the standard tolerogenic apoptosis, immunogenic cell death (ICD) constitutes a type of cellular demise that elicits an adaptive immune response. ICD has been characterized in malignant cells following cytotoxic interventions, such as chemotherapy or radiotherapy. Briefly, ICD of cancer cells releases some stress/danger signals that attract and activate dendritic cells (DCs). The latter can then engulf and cross-present tumor antigens to T lymphocytes, thus priming a cancer-specific immunity. This series of reactions works as a positive feedback loop where the antitumor immunity further improves the therapeutic efficacy by targeting cancer cells spared by the cytotoxic agent. However, not all chemotherapeutic drugs currently approved for cancer treatment are able to stimulate bona fide ICD: some commonly used agents, such as cisplatin or 5-fluorouracil, are unable to activate all features of ICD. Therefore, a better characterization of the process could help identify some gene or protein candidates to target pharmacologically and suggest combinations of drugs that would favor/increase antitumor immune response. To this end, we have built a mathematical model of the major cell types that intervene in ICD, namely cancer cells, DCs, CD8+ and CD4+ T cells. Our model not only integrates intracellular mechanisms within each individual cell entity, but also incorporates intercellular communications between them. The resulting cell population model recapitulates key features of the dynamics of ICD after an initial treatment, in particular the time-dependent size of the different cell types. The model is based on a discrete Boolean formalism and is simulated by means of a software tool, UPMaBoSS, which performs stochastic simulations with continuous time, considering the dynamics of the system at the cell population level with appropriate timing of events, and accounting for death and division of each cell type. With this model, the time scales of some of the processes involved in ICD, which are challenging to measure experimentally, have been predicted. In addition, our model analysis led to the identification of actionable targets for boosting ICD-induced antitumor response. All computational analyses and results are compiled in interactive notebooks which cover the presentation of the network structure, model simulations, and parameter sensitivity analyses.

20.
Cancers (Basel) ; 12(12)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276543

RESUMEN

After the success of the new generation of immune therapies, immune checkpoint receptors have become one important center of attention of molecular oncologists. The initial success and hopes of anti-programmed cell death protein 1 (anti-PD1) and anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4) therapies have shown some limitations since a majority of patients have continued to show resistance. Other immune checkpoints have raised some interest and are under investigation, such as T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT), inducible T-cell costimulator (ICOS), and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3), which appear as promising targets for immunotherapy. To explore their role and study possible synergetic effects of these different checkpoints, we have built a model of T cell receptor (TCR) regulation including not only PD1 and CTLA4, but also other well studied checkpoints (TIGIT, TIM3, lymphocyte activation gene 3 (LAG3), cluster of differentiation 226 (CD226), ICOS, and tumour necrosis factor receptors (TNFRs)) and simulated different aspects of T cell biology. Our model shows good correspondence with observations from available experimental studies of anti-PD1 and anti-CTLA4 therapies and suggest efficient combinations of immune checkpoint inhibitors (ICI). Among the possible candidates, TIGIT appears to be the most promising drug target in our model. The model predicts that signal transducer and activator of transcription 1 (STAT1)/STAT4-dependent pathways, activated by cytokines such as interleukin 12 (IL12) and interferon gamma (IFNG), could improve the effect of ICI therapy via upregulation of Tbet, suggesting that the effect of the cytokines related to STAT3/STAT1 activity is dependent on the balance between STAT1 and STAT3 downstream signalling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...