Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 515(7526): 228-33, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25296249

RESUMEN

Ultrafast endocytosis can retrieve a single, large endocytic vesicle as fast as 50-100 ms after synaptic vesicle fusion. However, the fate of the large endocytic vesicles is not known. Here we demonstrate that these vesicles transition to a synaptic endosome about one second after stimulation. The endosome is resolved into coated vesicles after 3 s, which in turn become small-diameter synaptic vesicles 5-6 s after stimulation. We disrupted clathrin function using RNA interference (RNAi) and found that clathrin is not required for ultrafast endocytosis but is required to generate synaptic vesicles from the endosome. Ultrafast endocytosis fails when actin polymerization is disrupted, or when neurons are stimulated at room temperature instead of physiological temperature. In the absence of ultrafast endocytosis, synaptic vesicles are retrieved directly from the plasma membrane by clathrin-mediated endocytosis. These results may explain discrepancies among published experiments concerning the role of clathrin in synaptic vesicle endocytosis.


Asunto(s)
Clatrina/metabolismo , Endosomas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Membrana Celular/metabolismo , Endocitosis , Humanos , Ratones , Temperatura
2.
Nature ; 504(7479): 242-247, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24305055

RESUMEN

To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20 s after fusion by the assembly of clathrin scaffolds or in approximately 1 s by the reversal of fusion pores via 'kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--'flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30 ms of the stimulus. Compensatory endocytosis occurs within 50 to 100 ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that 'ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.


Asunto(s)
Endocitosis , Hipocampo/citología , Sinapsis/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Potenciales de Acción , Animales , Dinaminas/metabolismo , Dinaminas/ultraestructura , Exocitosis , Fusión de Membrana , Ratones , Microscopía Electrónica , Rodopsina/genética , Rodopsina/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Factores de Tiempo
3.
Nat Struct Mol Biol ; 17(3): 280-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20154707

RESUMEN

Munc13 is a multidomain protein present in presynaptic active zones that mediates the priming and plasticity of synaptic vesicle exocytosis, but the mechanisms involved remain unclear. Here we use biophysical, biochemical and electrophysiological approaches to show that the central C(2)B domain of Munc13 functions as a Ca(2+) regulator of short-term synaptic plasticity. The crystal structure of the C(2)B domain revealed an unusual Ca(2+)-binding site with an amphipathic alpha-helix. This configuration confers onto the C(2)B domain unique Ca(2+)-dependent phospholipid-binding properties that favor phosphatidylinositolphosphates. A mutation that inactivated Ca(2+)-dependent phospholipid binding to the C(2)B domain did not alter neurotransmitter release evoked by isolated action potentials, but it did depress release evoked by action-potential trains. In contrast, a mutation that increased Ca(2+)-dependent phosphatidylinositolbisphosphate binding to the C(2)B domain enhanced release evoked by isolated action potentials and by action-potential trains. Our data suggest that, during repeated action potentials, Ca(2+) and phosphatidylinositolphosphate binding to the Munc13 C(2)B domain potentiate synaptic vesicle exocytosis, thereby offsetting synaptic depression induced by vesicle depletion.


Asunto(s)
Calcio/metabolismo , Exocitosis/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Electrofisiología , Exocitosis/genética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Fosfolípidos , Estructura Terciaria de Proteína/genética , Ratas , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Transmisión Sináptica/genética , Vesículas Sinápticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...