Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nat Rev Cardiol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048744

RESUMEN

Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.

2.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690903

RESUMEN

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Asunto(s)
Hipertensión , Músculo Liso Vascular , NADPH Oxidasa 1 , Proteína Disulfuro Isomerasas , Ratas Endogámicas SHR , Regulación hacia Arriba , Animales , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 1/genética , Hipertensión/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Ratas , Músculo Liso Vascular/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratas Wistar , Transcripción Genética
3.
Hypertension ; 81(6): 1218-1232, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511317

RESUMEN

Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.


Asunto(s)
Inflamación , Animales , Humanos , Arterias/metabolismo , Enfermedades Cardiovasculares/metabolismo , Epigénesis Genética , Inflamación/metabolismo , Inflamación/inmunología , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Vasculitis/metabolismo , Vasculitis/inmunología
4.
Endocrine ; 84(2): 345-349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38400880

RESUMEN

PURPOSE: Disorders/differences of sex development (DSD) result from variants in many different human genes but, frequently, have no detectable molecular cause. METHODS: Detailed clinical and genetic phenotyping was conducted on a family with three children. A Sec31a animal model and functional studies were used to investigate the significance of the findings. RESULTS: By trio whole-exome DNA sequencing we detected a heterozygous de novo nonsense SEC31A variant, in three children of healthy non-consanguineous parents. The children had different combinations of disorders that included complete gonadal dysgenesis and multiple pituitary hormone deficiency. SEC31A encodes a component of the COPII coat protein complex, necessary for intracellular anterograde vesicle-mediated transport between the endoplasmic reticulum (ER) and Golgi. CRISPR-Cas9 targeted knockout of the orthologous Sec31a gene region resulted in early embryonic lethality in homozygous mice. mRNA expression of ER-stress genes ATF4 and CHOP was increased in the children, suggesting defective protein transport. The pLI score of the gene, from gnomAD data, is 0.02. CONCLUSIONS: SEC31A might underlie a previously unrecognised clinical syndrome comprising gonadal dysgenesis, multiple pituitary hormone deficiencies, dysmorphic features and developmental delay. However, a variant that remains undetected, in a different gene, may alternatively be causal in this family.


Asunto(s)
Disgenesia Gonadal , Hipopituitarismo , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Disgenesia Gonadal/genética , Hipopituitarismo/genética , Hipopituitarismo/metabolismo , Ratones Noqueados , Linaje , Hormonas Hipofisarias/deficiencia , Hormonas Hipofisarias/genética , Proteínas de Transporte Vesicular/genética
5.
Can J Cardiol ; 39(12): 1874-1887, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37875177

RESUMEN

Under physiologic conditions, reactive oxygen species (ROS) function as signalling molecules that control cell function. However, in pathologic conditions, increased generation of ROS triggers oxidative stress, which plays a role in vascular changes associated with hypertension, including endothelial dysfunction, vascular reactivity, and arterial remodelling (termed the vasculopathy of hypertension). The major source of ROS in the vascular system is NADPH oxidase (NOX). Increased NOX activity drives vascular oxidative stress in hypertension. Molecular mechanisms underlying vascular damage in hypertension include activation of redox-sensitive signalling pathways, post-translational modification of proteins, and oxidative damage of DNA and cytoplasmic proteins. In addition, oxidative stress leads to accumulation of proteins in the endoplasmic reticulum (ER) (termed ER stress), with consequent activation of the unfolded protein response (UPR). ER stress is emerging as a potential player in hypertension as abnormal protein folding in the ER leads to oxidative stress and dysregulated activation of the UPR promotes inflammation and injury in vascular and cardiac cells. In addition, the ER engages in crosstalk with exogenous sources of ROS, such as mitochondria and NOX, which can amplify redox processes. Here we provide an update of the role of ROS and NOX in hypertension and discuss novel concepts on the interplay between oxidative stress and ER stress.


Asunto(s)
Hipertensión , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estrés del Retículo Endoplásmico/genética , Oxidación-Reducción
6.
Can J Cardiol ; 39(12): 1859-1873, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865227

RESUMEN

The transient receptor potential (TRP) channel superfamily is a group of nonselective cation channels that function as cellular sensors for a wide range of physical, chemical, and environmental stimuli. According to sequence homology, TRP channels are categorized into 6 subfamilies: TRP canonical, TRP vanilloid, TRP melastatin, TRP ankyrin, TRP mucolipin, and TRP polycystin. They are widely expressed in different cell types and tissues and have essential roles in various physiological and pathological processes by regulating the concentration of ions (Ca2+, Mg2+, Na+, and K+) and influencing intracellular signalling pathways. Human data and experimental models indicate the importance of TRP channels in vascular homeostasis and hypertension. Furthermore, TRP channels have emerged as key players in oxidative stress and inflammation, important in the pathophysiology of cardiovascular diseases, including hypertension. In this review, we present an overview of the TRP channels with a focus on their role in hypertension. In particular, we highlight mechanisms activated by TRP channels in vascular smooth muscle and endothelial cells and discuss their contribution to processes underlying vascular dysfunction in hypertension.


Asunto(s)
Hipertensión , Canales de Potencial de Receptor Transitorio , Humanos , Células Endoteliales/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Músculo Liso Vascular/metabolismo , Iones/metabolismo
7.
Sci Rep ; 13(1): 14086, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640791

RESUMEN

COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.


Asunto(s)
COVID-19 , Células Endoteliales , Humanos , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Inflamación , Replicación Viral , ARN Bicatenario
8.
Can J Cardiol ; 39(9): 1229-1243, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422258

RESUMEN

Hypertension is the primary cause of cardiovascular diseases and is responsible for nearly 9 million deaths worldwide annually. Increasing evidence indicates that in addition to pathophysiologic processes, numerous environmental factors, such as geographic location, lifestyle choices, socioeconomic status, and cultural practices, influence the risk, progression, and severity of hypertension, even in the absence of genetic risk factors. In this review, we discuss the impact of some environmental determinants on hypertension. We focus on clinical data from large population studies and discuss some potential molecular and cellular mechanisms. We highlight how these environmental determinants are interconnected, as small changes in one factor might affect others, and further affect cardiovascular health. In addition, we discuss the crucial impact of socioeconomic factors and how these determinants influence diverse communities with economic disparities. Finally, we address opportunities and challenges for new research to address gaps in knowledge on understanding molecular mechanisms whereby environmental factors influence development of hypertension and associated cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Hipertensión/epidemiología , Hipertensión/etiología , Estilo de Vida , Mediastino , Factores de Riesgo
9.
J Hypertens ; 41(10): 1521-1543, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382158

RESUMEN

Microcirculation is pervasive and orchestrates a profound regulatory cross-talk with the surrounding tissue and organs. Similarly, it is one of the earliest biological systems targeted by environmental stressors and consequently involved in the development and progression of ageing and age-related disease. Microvascular dysfunction, if not targeted, leads to a steady derangement of the phenotype, which cumulates comorbidities and eventually results in a nonrescuable, very high-cardiovascular risk. Along the broad spectrum of pathologies, both shared and distinct molecular pathways and pathophysiological alteration are involved in the disruption of microvascular homeostasis, all pointing to microvascular inflammation as the putative primary culprit. This position paper explores the presence and the detrimental contribution of microvascular inflammation across the whole spectrum of chronic age-related diseases, which characterise the 21st-century healthcare landscape. The manuscript aims to strongly affirm the centrality of microvascular inflammation by recapitulating the current evidence and providing a clear synoptic view of the whole cardiometabolic derangement. Indeed, there is an urgent need for further mechanistic exploration to identify clear, very early or disease-specific molecular targets to provide an effective therapeutic strategy against the otherwise unstoppable rising prevalence of age-related diseases.


Asunto(s)
Arterias , Inflamación , Humanos , Enfermedad Crónica , Microcirculación
10.
Pharmaceuticals (Basel) ; 16(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37375764

RESUMEN

Cationic and hydrophilic coatings based on casting and drying water dispersions of two different nanoparticles (NPs) onto glass are here described and evaluated for antimicrobial activity. Discoid cationic bilayer fragments (BF) surrounded by carboxy-methylcellulose (CMC) and poly (diallyl dimethyl ammonium) chloride (PDDA) NPs and spherical gramicidin D (Gr) NPs dispersed in water solution were cast onto glass coverslips and dried, forming a coating quantitatively evaluated against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. From plating and colony forming units (CFU) counting, all strains interacting for 1 h with the coatings lost viability from 105 to 106, to zero CFU, at two sets of Gr and PDDA doses: 4.6 and 25 µg, respectively, or, 0.94 and 5 µg, respectively. Combinations produced broad spectrum, antimicrobial coatings; PDDA electrostatically attached to the microbes damaging cell walls, allowing Gr NPs interaction with the cell membrane. This concerted action promoted optimal activity at low Gr and PDDA doses. Further washing and drying of the deposited dried coatings showed that they were washed out so that antimicrobial activity was no longer present on the glass surface. Significant applications in biomedical materials can be foreseen for these transient coatings.

11.
Biotechnol Appl Biochem ; 70(6): 1830-1842, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37337370

RESUMEN

The green microalga Chlamydomonas reinhardtii is a model microorganism for several areas of study. Among the different microalgae species, it presents advantageous characteristics, such as genomes completely sequenced and well-established techniques for genetic transformation. Despite that, C. reinhardtii production is still not easily commercially viable, especially due to the low biomass yield. So far there are no reports of scientometric study focusing only on C. reinhardtii biomass production process. Considering the need for culture optimization, a scientometric research was conducted to analyze the papers that investigated the growth regimes effects in C. reinhardtii cultivation. The search resulted in 130 papers indexed on Web of Science and Scopus platforms from 1969 to December 2022. The quantitative analysis indicated that the photoautotrophic regime was the most employed in the papers. However, when comparing the three growth regimes, the mixotrophic one led to the highest production of biomass, lipids, and heterologous protein. The production of bioproducts was considered the main objective of most of the papers and, among them, biomass was the most frequently investigated. The highest biomass production reported among the papers was 40 g L-1 in the heterotrophic growth of a transgenic strain. Other culture conditions were also crucial for C. reinhardtii growth, for instance, temperature and cultivation process.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Biomasa , Microalgas/metabolismo
13.
Rev. bras. saúde ocup ; 48: e13, 2023. tab
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1521827

RESUMEN

Resumo Objetivos: caracterizar a violência sofrida por profissionais de enfermagem em Unidades Básicas de Saúde da Família, revelar as consequências dessas vivências, apontar medidas de prevenção. Métodos: pesquisa qualitativa com análise de conteúdo por categorização temática. Participaram do estudo 26 profissionais de enfermagem de 12 Unidades de Saúde da Família de um município do interior de São Paulo. A coleta de dados foi realizada por meio de entrevista oral, utilizando roteiro semiestruturado. Resultados: a forma de violência mais relatada foi a agressão verbal de usuários insatisfeitos com o atendimento. Entre as consequências das experiências vividas, destacaram-se atitudes defensivas, além de sentimentos de medo e desânimo. As medidas de prevenção apontadas pelos participantes foram educação, ação organizacional, adoção de tecnologias relacionais. O descompasso entre oferta e demanda nos serviços, a falta de condições dignas de trabalho e a ausência de medidas de promoção da saúde dos trabalhadores - aliados à naturalização da violência - ajudaram a entender o cenário evidenciado. Conclusão: a violência está presente no ambiente laboral dos profissionais de enfermagem e precisa ser minimizada na Atenção Primária à Saúde. Refletir sobre as manifestações da violência, o quanto ela é prejudicial e como pode ser prevenida torna-se essencial para seu enfrentamento.


Abstract Objectives: to characterize workplace violence against nursing professionals working in Basic Family Health Units to reveal their consequences and point out preventive measures. Methods: qualitative research with content analysis by thematic categorization. Data were collected by means of semi-structured interviews with 26 nursing professionals from twelve Family Health Units in the São Paulo countryside. Results: verbal assault from users dissatisfied with the service was the most frequent form of violence experienced, leading to defensive attitudes and feelings of fear and despondency. Participants pointed out education, organizational action and adoption of relational technologies as prevention measures. The mismatch between supply and demand, the lack of decent working conditions and the absence of measures to promote occupational health - combined with a naturalized violence - help to explain this scenario. Conclusion: workplace violence is a common experience among nursing professionals and must be mitigated in Primary Health Care. Reflecting on how violence is manifested, its harmful consequences and prevention measures is essential for combating it.

14.
Cell Calcium ; 106: 102639, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36027648

RESUMEN

The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.


Asunto(s)
Lipoilación , Canales Catiónicos TRPM , Calcio/metabolismo , Cationes/metabolismo , Fosforilación , Transducción de Señal , Canales Catiónicos TRPM/metabolismo
15.
Commun Biol ; 5(1): 746, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882956

RESUMEN

Hyperaldosteronism causes cardiovascular disease as well as hypomagnesemia. Mechanisms are ill-defined but dysregulation of TRPM7, a Mg2+-permeable channel/α-kinase, may be important. We examined the role of TRPM7 in aldosterone-dependent cardiovascular and renal injury by studying aldosterone-salt treated TRPM7-deficient (TRPM7+/Δkinase) mice. Plasma/tissue [Mg2+] and TRPM7 phosphorylation were reduced in vehicle-treated TRPM7+/Δkinase mice, effects recapitulated in aldosterone-salt-treated wild-type mice. Aldosterone-salt treatment exaggerated vascular dysfunction and amplified cardiovascular and renal fibrosis, with associated increased blood pressure in TRPM7+/Δkinase mice. Tissue expression of Mg2+-regulated phosphatases (PPM1A, PTEN) was downregulated and phosphorylation of Smad3, ERK1/2, and Stat1 was upregulated in aldosterone-salt TRPM7-deficient mice. Aldosterone-induced phosphorylation of pro-fibrotic signaling was increased in TRPM7+/Δkinase fibroblasts, effects ameliorated by Mg2+ supplementation. TRPM7 deficiency amplifies aldosterone-salt-induced cardiovascular remodeling and damage. We identify TRPM7 downregulation and associated hypomagnesemia as putative molecular mechanisms underlying deleterious cardiovascular and renal effects of hyperaldosteronism.


Asunto(s)
Hiperaldosteronismo , Canales Catiónicos TRPM , Aldosterona/farmacología , Animales , Fibrosis , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Riñón/metabolismo , Magnesio/metabolismo , Ratones , Proteína Fosfatasa 2C/metabolismo , Cloruro de Sodio , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
16.
Cardiovasc Res ; 118(5): 1359-1373, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-34320175

RESUMEN

AIMS: NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS: VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION: We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.


Asunto(s)
Hipertensión , Músculo Liso Vascular , Actinas/metabolismo , Angiotensina II/metabolismo , Animales , Células Cultivadas , Humanos , Meliteno/metabolismo , Meliteno/farmacología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , NADPH Oxidasa 5/farmacología , Oxidación-Reducción , Proteínas Tirosina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo
17.
Circ Res ; 128(7): 993-1020, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793335

RESUMEN

A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.


Asunto(s)
Hipertensión/etiología , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Humanos , Hipertensión/metabolismo , Inflamasomas/fisiología , Riñón/metabolismo , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Oxidación-Reducción , Transducción de Señal/fisiología , Superóxidos/metabolismo , Enfermedades Vasculares/metabolismo
18.
Eur J Pharmacol ; 890: 173636, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33053380

RESUMEN

Inflammatory arthritis, such as rheumatoid arthritis (RA), stands out as one of the main sources of pain and impairment to the quality of life. The use of hemopressin (PVNFKFLSH; Hp), an inverse agonist of type 1 cannabinoid receptor, has proven to be effective in producing analgesia in pain models, but its effect on neuro-inflammatory aspects of RA is limited. In this study, antigen-induced arthritis (AIA) was evoked by the intraarticular (i.art.) injection of methylated bovine serum albumin (mBSA) in male Sprague Dawley rats. Phosphate buffered saline (PBS)-injected ipsilateral knee joints or AIA contralateral were used as control. Nociceptive and inflammatory parameters such as knee joint oedema and leukocyte influx and histopathological changes were carried out in addition to the local measurement of interleukins (IL) IL-6, IL-1ß, tumor necrosis factor-α and the immunoreactivity of the neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) in the spinal cord (lumbar L3-5 segments) of AIA rats. For 4 days, AIA rats were treated daily with a single administration of saline, Hp injected (10 or 20 µg/day, i.art.), Hp given orally (20 µg/Kg, p.o.) or indomethacin (Indo; 5 mg/Kg, i.p.). In comparison to the PBS control group, the induction of AIA produced a significant and progressive mono-arthritis condition. The degree of AIA severity progressively compromised the normal walking pattern and impaired mobility over the next four days in relation to PBS-injected rats or contralateral knee joints. In AIA rats, the reduction of the distance between footprints and disturbances of gait evidenced signs of nociception. This response worsened at day 4, and a loss of footprint from the ipsilateral hind paw was evident. Daily treatment of the animals with Hp either i.art. (10 and 20 µg/knee) or p.o. (20 µg/Kg) as well as Indo (5 mg/Kg, i.p.) ameliorated the impaired mobility in a time-dependent manner (P < 0.05). In parallel, the AIA-injected ipsilateral knee joints reach a peak of swelling 24 h after AIA induction, which persisted over the next four days in relation to PBS-injected rats or contralateral knee joints. There was a significant but not dose-dependent inhibitory effect produced by all dosages and routes of Hp treatments on AIA-induced knee joint swelling (P < 0.05). In addition, the increased synovial levels of MPO activity, total leukocytes number and IL-6, but not IL-1ß, were significantly reduced by the lower i.art. dose of Hp. In conclusion, these results successfully demonstrate that Hp may represent a novel therapeutic strategy to treat RA, an effect which is unrelated to the proinflammatory actions of the neuropeptides CGRP and SP.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Hemoglobinas/farmacología , Dolor Nociceptivo/prevención & control , Fragmentos de Péptidos/farmacología , Administración Oral , Animales , Antiinflamatorios/administración & dosificación , Conducta Animal/efectos de los fármacos , Citocinas/metabolismo , Edema/tratamiento farmacológico , Marcha/efectos de los fármacos , Hemoglobinas/administración & dosificación , Inflamación/tratamiento farmacológico , Inyecciones Intraarticulares , Articulación de la Rodilla/efectos de los fármacos , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Leucocitos/efectos de los fármacos , Masculino , Fragmentos de Péptidos/administración & dosificación , Ratas Sprague-Dawley , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Sustancia P/metabolismo
19.
Biotechnol Prog ; 37(2): e3101, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33169497

RESUMEN

Biotechnology advances have allowed bacteria, yeasts, plants, mammalian and insect cells to function as heterologous protein expression systems. Recently, microalgae have gained attention as an innovative platform for recombinant protein production, due to low culture media cost, compared to traditional systems, as well as the fact that microalgae such as Chlamydomonas reinhardtii are considered safe (GRAS) by the Food and Drug Administration (FDA). Previous studies showed that recombinant protein production in traditional platforms by semicontinuous process increased biomass and bio product productivity, when compared to batch process. As there is a lack of studies on semicontinuous process for recombinant protein production in microalgae, the production of recombinant mCherry fluorescent protein was evaluated by semicontinuous cultivation of Chlamydomonas reinhardtii in bubble column photobioreactor. This semicontinuous cultivation process was evaluated in the following conditions: 20%, 40%, and 60% culture portion withdrawal. The highest culture withdrawal percentage (60%) provided the best results, as an up to 161% increase in mCherry productivity (454.5 RFU h-1 - Relative Fluorescence Unit h-1 ), in comparison to batch cultivation (174.0 RFU h-1 ) of the same strain. All cultivations were carried out for 13 days, at pH 7, temperature 25°C and, by semicontinuous process, two culture withdrawals were taken during the cultivations. Throughout the production cycles, it was possible to obtain biomass concentration up to 1.36 g L-1 .


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Chlamydomonas reinhardtii/metabolismo , Medios de Cultivo/metabolismo , Sustancias Luminiscentes/metabolismo , Proteínas Luminiscentes/biosíntesis , Fotobiorreactores/normas , Proteínas Recombinantes/biosíntesis , Biomasa , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Fluorescente Roja
20.
Sci Rep ; 10(1): 17818, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082354

RESUMEN

Vascular smooth muscle cell (VSMC) function is regulated by Nox-derived reactive oxygen species (ROS) and redox-dependent signaling in discrete cellular compartments. Whether cholesterol-rich microdomains (lipid rafts/caveolae) are involved in these processes is unclear. Here we examined the sub-cellular compartmentalization of Nox isoforms in lipid rafts/caveolae and assessed the role of these microdomains in VSMC ROS production and pro-contractile and growth signaling. Intact small arteries and primary VSMCs from humans were studied. Vessels from Cav-1-/- mice were used to test proof of concept. Human VSMCs express Nox1, Nox4, Nox5 and Cav-1. Cell fractionation studies showed that Nox1 and Nox5 but not Nox4, localize in cholesterol-rich fractions in VSMCs. Angiotensin II (Ang II) stimulation induced trafficking into and out of lipid rafts/caveolae for Nox1 and Nox5 respectively. Co-immunoprecipitation studies showed interactions between Cav-1/Nox1 but not Cav-1/Nox5. Lipid raft/caveolae disruptors (methyl-ß-cyclodextrin (MCD) and Nystatin) and Ang II stimulation variably increased O2- generation and phosphorylation of MLC20, Ezrin-Radixin-Moesin (ERM) and p53 but not ERK1/2, effects recapitulated in Cav-1 silenced (siRNA) VSMCs. Nox inhibition prevented Ang II-induced phosphorylation of signaling molecules, specifically, ERK1/2 phosphorylation was attenuated by mellitin (Nox5 inhibitor) and Nox5 siRNA, while p53 phosphorylation was inhibited by NoxA1ds (Nox1 inhibitor). Ang II increased oxidation of DJ1, dual anti-oxidant and signaling molecule, through lipid raft/caveolae-dependent processes. Vessels from Cav-1-/- mice exhibited increased O2- generation and phosphorylation of ERM. We identify an important role for lipid rafts/caveolae that act as signaling platforms for Nox1 and Nox5 but not Nox4, in human VSMCs. Disruption of these microdomains promotes oxidative stress and Nox isoform-specific redox signalling important in vascular dysfunction associated with cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Microdominios de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 5/metabolismo , Animales , Enfermedades Cardiovasculares/patología , Caveolina 1/genética , Humanos , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Oxidación-Reducción , Estrés Oxidativo , ARN Interferente Pequeño/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA