Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Plant Biotechnol J ; 19(9): 1798-1811, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33780108

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species. miR812w is a 24nt-long that requires DCL3 for its biogenesis and is loaded into AGO4 proteins. Whereas overexpression of miR812w increased resistance to infection by the rice blast fungus Magnaporthe oryzae, CRISPR/Cas9-mediated MIR812w editing enhances disease susceptibility, supporting that miR812w plays a role in blast resistance. We show that miR812w derives from the Stowaway type of rice MITEs (Miniature Inverted-Repeat Transposable Elements). Moreover, miR812w directs DNA methylation in trans at target genes that have integrated a Stowaway MITE copy into their 3' or 5' untranslated region (ACO3, CIPK10, LRR genes), as well as in cis at the MIR812w locus. The target genes of miR812 were found to be hypo-methylated around the miR812 recognition site, their expression being up-regulated in transgene-free CRISPR/Cas9-edited miR812 plants. These findings further support that, in addition to post-transcriptional regulation of gene expression, miRNAs can exert their regulatory function at the transcriptional level. This relationship between miR812w and Stowaway MITEs integrated into multiple coding genes might eventually create a network for miR812w-mediated regulation of gene expression with implications in rice immunity.


Asunto(s)
Magnaporthe , MicroARNs , Oryza , Ascomicetos , Elementos Transponibles de ADN , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Oryza/genética , Enfermedades de las Plantas/genética , Inmunidad de la Planta
3.
Plant Cell Physiol ; 59(1): 190-204, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29149328

RESUMEN

MicroRNAs (miRNAs) are a class of short endogenous non-coding small RNAs that direct post-transcriptional gene silencing in eukaryotes. In plants, the expression of a large number of miRNAs has been shown to be regulated during pathogen infection. However, the functional role of the majority of these pathogen-regulated miRNAs has not been elucidated. In this work, we investigated the role of Arabidopsis miR858 in the defense response of Arabidopsis plants to infection by fungal pathogens with necrotrophic (Plectosphaerella cucumerina) or hemibiotrophic (Fusarium oxysporum and Colletotrichum higginsianum) lifestyles. Whereas overexpression of MIR858 enhances susceptibility to pathogen infection, interference with miR858 activity by target mimics (MIM858 plants) results in disease resistance. Upon pathogen challenge, stronger activation of the defense genes PDF1.2 and PR4 occurs in MIM858 plants than in wild-type plants, whereas pathogen infection induced weaker activation of these genes in MIR858 overexpressor plants. Reduced miR858 activity, and concomitant up-regulation of miR858 target genes, in MIM858 plants, also leads to accumulation of flavonoids in Arabidopsis leaves. The antifungal activity of phenylpropanoid compounds, including flavonoids, is presented. Furthermore, pathogen infection or treatment with fungal elicitors is accompanied by a gradual decrease in MIR858 expression in wild-type plants, suggesting that miR858 plays a role in PAMP (pathogen-associated molecular pattern)-triggered immunity. These data support that miR858 is a negative regulator of Arabidopsis immunity and provide new insights into the relevant role of miR858-mediated regulation of the phenylpropanoid biosynthetic pathway in controlling Arabidopsis immunity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Resistencia a la Enfermedad/genética , MicroARNs/genética , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Arabidopsis/microbiología , Colletotrichum/fisiología , Flavonoides/metabolismo , Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA