Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 171
1.
Proc Natl Acad Sci U S A ; 121(22): e2402890121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771868

Maintaining the structure of cardiac membranes and membrane organelles is essential for heart function. A critical cardiac membrane organelle is the transverse tubule system (called the t-tubule system) which is an invagination of the surface membrane. A unique structural characteristic of the cardiac muscle t-tubule system is the extension of the extracellular matrix (ECM) from the surface membrane into the t-tubule lumen. However, the importance of the ECM extending into the cardiac t-tubule lumen is not well understood. Dystroglycan (DG) is an ECM receptor in the surface membrane of many cells, and it is also expressed in t-tubules in cardiac muscle. Extensive posttranslational processing and O-glycosylation are required for DG to bind ECM proteins and the binding is mediated by a glycan structure known as matriglycan. Genetic disruption resulting in defective O-glycosylation of DG results in muscular dystrophy with cardiorespiratory pathophysiology. Here, we show that DG is essential for maintaining cardiac t-tubule structural integrity. Mice with defects in O-glycosylation of DG developed normal t-tubules but were susceptible to stress-induced t-tubule loss or severing that contributed to cardiac dysfunction and disease progression. Finally, we observed similar stress-induced cardiac t-tubule disruption in a cohort of mice that solely lacked matriglycan. Collectively, our data indicate that DG in t-tubules anchors the luminal ECM to the t-tubule membrane via the polysaccharide matriglycan, which is critical to transmitting structural strength of the ECM to the t-tubules and provides resistance to mechanical stress, ultimately preventing disruptions in cardiac t-tubule integrity.


Dystroglycans , Myocardium , Animals , Mice , Myocardium/metabolism , Myocardium/pathology , Glycosylation , Dystroglycans/metabolism , Extracellular Matrix/metabolism , Mice, Knockout
2.
bioRxiv ; 2023 Nov 27.
Article En | MEDLINE | ID: mdl-37873263

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for over 99.8% of all possible coding single nucleotide variants and resolved 310 clinically reported variants of uncertain significance with high confidence, enhancing clinical variant interpretation in dystroglycanopathies. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.

3.
Bio Protoc ; 13(18): e4827, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37753476

Matriglycan is a linear polysaccharide of alternating xylose and glucuronic acid units [-Xyl-α1,3-GlcA-ß1,3]n that is uniquely synthesized on α-dystroglycan (α-DG) and is essential for neuromuscular function and brain development. It binds several extracellular matrix proteins that contain laminin-globular domains and is a receptor for Old World arenaviruses such as Lassa Fever virus. Monoclonal antibodies such as IIH6 are commonly used to detect matriglycan on α-DG. However, endogenous expression levels are not sufficient to detect and analyze matriglycan by mass spectrometry approaches. Thus, there is a growing need to independently confirm the presence of matriglycan on α-DG and possibly other proteins. We used an enzymatic approach to detect matriglycan, which involved digesting it with two thermophilic exoglycosidases: ß-Glucuronidase from Thermotoga maritima and α-xylosidase from Sulfolobus solfataricus. This allowed us to identify and categorize matriglycan on α-DG by studying post-digestion changes in the molecular weight of α-DG using SDS-PAGE followed by western blotting with anti-matriglycan antibodies, anti-core α-DG antibodies, and/or laminin binding assay. In some tissues, matriglycan is capped by a sulfate group, which renders it resistant to digestion by these dual exoglycosidases. Thus, this method can be used to determine the capping status of matriglycan. To date, matriglycan has only been identified on vertebrate α-DG. We anticipate that this method will facilitate the discovery of matriglycan on α-DG in other species and possibly on other proteins. Key features • Analysis of endogenous matriglycan on dystroglycan from any animal tissue. • Matriglycan is digested using thermophilic enzymes, which require optimum thermophilic conditions. • Western blotting is used to assay the success and extent of digestion. • Freshly purified enzymes work best to digest matriglycan.

4.
Elife ; 122023 02 01.
Article En | MEDLINE | ID: mdl-36723429

Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high affinity to ECM proteins with LG domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that protein O-mannose kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150-250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in an ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions (ECs) or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.


Dystroglycans , Muscular Dystrophies , N-Acetylglucosaminyltransferases , Animals , Mice , Dystroglycans/metabolism , Extracellular Matrix Proteins/metabolism , Glycosylation , Laminin/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Protein Kinases/metabolism , Protein Processing, Post-Translational , N-Acetylglucosaminyltransferases/metabolism
5.
bioRxiv ; 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38187633

Matriglycan (-1,3-ß-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.

6.
Nat Commun ; 13(1): 3617, 2022 06 24.
Article En | MEDLINE | ID: mdl-35750689

α-Dystroglycan (α-DG) is uniquely modified on O-mannose sites by a repeating disaccharide (-Xylα1,3-GlcAß1,3-)n termed matriglycan, which is a receptor for laminin-G domain-containing proteins and employed by old-world arenaviruses for infection. Using chemoenzymatically synthesized matriglycans printed as a microarray, we demonstrate length-dependent binding to Laminin, Lassa virus GP1, and the clinically-important antibody IIH6. Utilizing an enzymatic engineering approach, an N-linked glycoprotein was converted into a IIH6-positive Laminin-binding glycoprotein. Engineering of the surface of cells deficient for either α-DG or O-mannosylation with matriglycans of sufficient length recovers infection with a Lassa-pseudovirus. Finally, free matriglycan in a dose and length dependent manner inhibits viral infection of wildtype cells. These results indicate that matriglycan alone is necessary and sufficient for IIH6 staining, Laminin and LASV GP1 binding, and Lassa-pseudovirus infection and support a model in which it is a tunable receptor for which increasing chain length enhances ligand-binding capacity.


Dystroglycans , Laminin , Dystroglycans/metabolism , Glycoproteins/metabolism , Laminin/metabolism , Lassa virus/metabolism , Polysaccharides/metabolism
7.
Sci Adv ; 8(21): eabn0379, 2022 05 27.
Article En | MEDLINE | ID: mdl-35613260

Muscular dystrophy is a progressive and ultimately lethal neuromuscular disease. Although gene editing and gene transfer hold great promise as therapies when administered before the onset of severe clinical symptoms, it is unclear whether these strategies can restore muscle function and improve survival in the late stages of muscular dystrophy. Largemyd/Largemyd (myd) mice lack expression of like-acetylglucosaminyltransferase-1 (Large1) and exhibit severe muscle pathophysiology, impaired mobility, and a markedly reduced life span. Here, we show that systemic delivery of AAV2/9 CMV Large1 (AAVLarge1) in >34-week-old myd mice with advanced disease restores matriglycan expression on dystroglycan, attenuates skeletal muscle pathophysiology, improves motor and respiratory function, and normalizes systemic metabolism, which collectively and markedly extends survival. Our results in a mouse model of muscular dystrophy demonstrate that skeletal muscle function can be restored, illustrating its remarkable plasticity, and that survival can be greatly improved even after the onset of severe muscle pathophysiology.


Muscular Dystrophies , N-Acetylglucosaminyltransferases , Animals , Dystroglycans/metabolism , Gene Transfer Techniques , Glycosylation , Mice , Muscle, Skeletal/metabolism , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Muscular Dystrophies/therapy , Musculoskeletal Physiological Phenomena , N-Acetylglucosaminyltransferases/genetics
8.
Neuromuscul Disord ; 31(11): 1169-1178, 2021 11.
Article En | MEDLINE | ID: mdl-34654610

Alpha-dystroglycan (αDG) is a highly glycosylated cell surface protein with a significant role in cell-to-extracellular matrix interactions in muscle. αDG interaction with extracellular ligands relies on the activity of the LARGE1 glycosyltransferase that synthesizes and extends the heteropolysaccharide matriglycan. Abnormalities in αDG glycosylation and formation of matriglycan are the pathogenic mechanisms for the dystroglycanopathies, a group of congenital muscular dystrophies. Muscle biopsies were evaluated from related 6-week-old Labrador retriever puppies with poor suckling, small stature compared to normal litter mates, bow-legged stance and markedly elevated creatine kinase activities. A dystrophic phenotype with marked degeneration and regeneration, multifocal mononuclear cell infiltration and endomysial fibrosis was identified on muscle cryosections. Single nucleotide polymorphism (SNP) array genotyping data on the family members identified three regions of homozygosity in 4 cases relative to 8 controls. Analysis of whole genome sequence data from one of the cases identified a stop codon mutation in the LARGE1 gene that truncates 40% of the protein. Immunofluorescent staining and western blotting demonstrated the absence of matriglycan in skeletal muscle and heart from affected dogs. Compared to control, LARGE enzyme activity was not detected. This is the first report of a dystroglycanopathy in dogs.


Dog Diseases/genetics , Muscular Dystrophy, Animal/genetics , Animals , Dogs , Dystroglycans/metabolism , Glycosylation , Muscle, Skeletal/pathology , Mutation , Phenotype
9.
Viruses ; 13(9)2021 08 25.
Article En | MEDLINE | ID: mdl-34578260

Lassa fever virus (LASV) can cause life-threatening hemorrhagic fevers for which there are currently no vaccines or targeted treatments. The late Prof. Stefan Kunz, along with others, showed that the high-affinity host receptor for LASV, and other Old World and clade-C New World mammarenaviruses, is matriglycan-a linear repeating disaccharide of alternating xylose and glucuronic acid that is polymerized uniquely on α-dystroglycan by like-acetylglucosaminyltransferase-1 (LARGE1). Although α-dystroglycan is ubiquitously expressed, LASV preferentially infects vascular endothelia and professional phagocytic cells, which suggests that viral entry requires additional cell-specific factors. In this review, we highlight the work of Stefan Kunz detailing the molecular mechanism of LASV binding and discuss the requirements of receptors, such as tyrosine kinases, for internalization through apoptotic mimicry.


Dystroglycans/metabolism , Glucuronic Acid/chemistry , Lassa virus/metabolism , Polymers/metabolism , Virus Attachment , Xylose/chemistry , Animals , Dystroglycans/chemistry , Glucuronic Acid/metabolism , Humans , Lassa Fever/virology , Lassa virus/genetics , Mice , Polymers/chemistry , Receptors, Virus , Virus Internalization , Xylose/metabolism
10.
Elife ; 92020 09 25.
Article En | MEDLINE | ID: mdl-32975514

Matriglycan [-GlcA-ß1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetyl-glucosaminyltransferase 1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNAc-ß1,3-GlcNAc-ß1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk gene expression in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~ 90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy.


Dystroglycans/metabolism , Gene Expression , Muscle, Skeletal/physiology , N-Acetylglucosaminyltransferases/genetics , Protein Kinases/genetics , Animals , Male , Mannose/chemistry , Mice , N-Acetylglucosaminyltransferases/metabolism , Phosphorylation , Protein Kinases/metabolism
11.
Sci Rep ; 10(1): 10967, 2020 07 03.
Article En | MEDLINE | ID: mdl-32620803

We sought here to induce the excision of a large intragenic segment within the intact dystrophin gene locus, with the ultimate goal to elucidate dystrophin protein function and stability in striated muscles in vivo. To this end, we implemented an inducible-gene excision methodology using a floxed allele approach, demarcated by dystrophin exons 2-79, in complementation with a cardiac and skeletal muscle directed gene deletion system for spatial-temporal control of dystrophin gene excision in vivo. Main findings of this study include evidence of significant intact dystrophin gene excision, ranging from ~ 25% in heart muscle to ~ 30-35% in skeletal muscles in vivo. Results show that despite evidence of significant dystrophin gene excision, no significant decrease in dystrophin protein content was evident by Western blot analysis, at three months post excision in skeletal muscles or by 6 months post gene excision in heart muscle. Challenges of in vivo dystrophin gene excision revealed acute deleterious effects of tamoxifen on striated muscles, including a transient down regulation in dystrophin gene transcription in the absence of dystrophin gene excision. In addition, technical limitations of incomplete dystrophin gene excision became apparent that, in turn, tempered interpretation. Collectively, these findings are in keeping with earlier studies suggesting the dystrophin protein to be long-lived in striated muscles in vivo; however, more rigorous quantitative analysis of dystrophin stability in vivo will require future works in which more complete gene excision can be demonstrated, and without significant off-target effects of the gene deletion experimental platform per se.


Gene Targeting/methods , Muscle, Skeletal/metabolism , Myocardium/metabolism , Animals , Cardiomyopathies/chemically induced , Dystrophin/deficiency , Dystrophin/genetics , Female , Gene Deletion , Gene Expression/drug effects , Gene Knockdown Techniques/methods , Heart/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Mice, Knockout , Muscle, Skeletal/drug effects , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Protein Stability , Tamoxifen/pharmacology , Tamoxifen/toxicity
12.
Glycobiology ; 30(10): 817-829, 2020 09 28.
Article En | MEDLINE | ID: mdl-32149355

Mutations in multiple genes required for proper O-mannosylation of α-dystroglycan are causal for congenital/limb-girdle muscular dystrophies and abnormal brain development in mammals. Previously, we and others further elucidated the functional O-mannose glycan structure that is terminated by matriglycan, [(-GlcA-ß3-Xyl-α3-)n]. This repeating disaccharide serves as a receptor for proteins in the extracellular matrix. Here, we demonstrate in vitro that HNK-1 sulfotransferase (HNK-1ST/carbohydrate sulfotransferase) sulfates terminal glucuronyl residues of matriglycan at the 3-hydroxyl and prevents further matriglycan polymerization by the LARGE1 glycosyltransferase. While α-dystroglycan isolated from mouse heart and kidney is susceptible to exoglycosidase digestion of matriglycan, the functional, lower molecular weight α-dystroglycan detected in brain, where HNK-1ST expression is elevated, is resistant. Removal of the sulfate cap by a sulfatase facilitated dual-glycosidase digestion. Our data strongly support a tissue specific mechanism in which HNK-1ST regulates polymer length by competing with LARGE for the 3-position on the nonreducing GlcA of matriglycan.


Dystroglycans/metabolism , Glucuronic Acid/metabolism , Sulfotransferases/metabolism , Animals , Dystroglycans/chemistry , Glucuronic Acid/chemistry , Glycosylation , Mice , Sulfotransferases/chemistry , Sulfotransferases/isolation & purification
13.
Acta Neuropathol ; 138(6): 1033-1052, 2019 12.
Article En | MEDLINE | ID: mdl-31463571

Glioblastomas (GBMs) are malignant central nervous system (CNS) neoplasms with a very poor prognosis. They display cellular hierarchies containing self-renewing tumourigenic glioma stem cells (GSCs) in a complex heterogeneous microenvironment. One proposed GSC niche is the extracellular matrix (ECM)-rich perivascular bed of the tumour. Here, we report that the ECM binding dystroglycan (DG) receptor is expressed and functionally glycosylated on GSCs residing in the perivascular niche. Glycosylated αDG is highly expressed and functional on the most aggressive mesenchymal-like (MES-like) GBM tumour compartment. Furthermore, we found that DG acts to maintain an MES-like state via tight control of MAPK activation. Antibody-based blockade of αDG induces robust ERK-mediated differentiation leading to reduced GSC potential. DG was shown to be required for tumour initiation in MES-like GBM, with constitutive loss significantly delaying or preventing tumourigenic potential in-vivo. These findings reveal a central role of the DG receptor, not only as a structural element, but also as a critical factor promoting MES-like GBM and the maintenance of GSCs residing in the perivascular niche.


Brain Neoplasms/metabolism , Dystroglycans/metabolism , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/physiology , Animals , Brain Neoplasms/blood supply , Brain Neoplasms/surgery , Cell Transformation, Neoplastic , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Glioma/blood supply , Glioma/surgery , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation
14.
Proc Natl Acad Sci U S A ; 116(36): 18001-18008, 2019 09 03.
Article En | MEDLINE | ID: mdl-31427525

Lymphocytic choriomeningitis virus (LCMV) WE variant 2.2 (v2.2) generated a high level of the major mouse urinary protein: MUP. Mice infected with LCMV WE v54, which differed from v2.2 by a single amino acid in the viral glycoprotein, failed to generate MUP above baseline levels found in uninfected controls. Variant 54 bound at 2.5 logs higher affinity to the LCMV receptor α-dystroglycan (α-DG) than v2.2 and entered α-DG-expressing but not α-DG-null cells. Variant 2.2 infected both α-DG-null or -expressing cells. Variant 54 infected more dendritic cells, generated a negligible CD8 T cell response, and caused a persistent infection, while v2.2 generated cytotoxic T lymphocytes (CTLs) and cleared virus within 10 days. By 20 days postinfection and through the 80-day observation period, significantly higher amounts of MUP were found in v2.2-infected mice. Production of MUP was dependent on virus-specific CTL as deletion of such cells aborted MUP production. Furthermore, MUP production was not elevated in v2.2 persistently infected mice unless virus was cleared following transfer of virus-specific CTL.


CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Proteins/immunology , Animals , Dystroglycans/immunology , Lymphocytic Choriomeningitis/pathology , Mice
15.
Proc Natl Acad Sci U S A ; 116(23): 11396-11401, 2019 06 04.
Article En | MEDLINE | ID: mdl-31097590

α-Dystroglycan (α-DG) is a highly glycosylated basement membrane receptor that is cleaved by the proprotein convertase furin, which releases its N-terminal domain (α-DGN). Before cleavage, α-DGN interacts with the glycosyltransferase LARGE1 and initiates functional O-glycosylation of the mucin-like domain of α-DG. Notably, α-DGN has been detected in a wide variety of human bodily fluids, but the physiological significance of secreted α-DGN remains unknown. Here, we show that mice lacking α-DGN exhibit significantly higher viral titers in the lungs after Influenza A virus (IAV) infection (strain A/Puerto Rico/8/1934 H1N1), suggesting an inability to control virus load. Consistent with this, overexpression of α-DGN before infection or intranasal treatment with recombinant α-DGN prior and during infection, significantly reduced IAV titers in the lungs of wild-type mice. Hemagglutination inhibition assays using recombinant α-DGN showed in vitro neutralization of IAV. Collectively, our results support a protective role for α-DGN in IAV proliferation.


Cell Proliferation/drug effects , Dystroglycans/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Protective Agents/pharmacology , Animals , Basement Membrane/drug effects , Basement Membrane/virology , Body Fluids/drug effects , Body Fluids/virology , Cell Line , Glycosylation/drug effects , HEK293 Cells , Humans , Inflammation/drug therapy , Inflammation/virology , Influenza, Human/drug therapy , Influenza, Human/virology , Lung/drug effects , Lung/virology , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Viral Load/methods
16.
Skelet Muscle ; 9(1): 11, 2019 05 04.
Article En | MEDLINE | ID: mdl-31054580

BACKGROUND: α-Dystroglycan is the highly glycosylated component of the dystrophin-glycoprotein complex (DGC) that binds with high-affinity to extracellular matrix (ECM) proteins containing laminin-G-like (LG) domains via a unique heteropolysaccharide [-GlcA-beta1,3-Xyl-alpha1,3-]n called matriglycan. Changes in expression of components of the DGC or in the O-glycosylation of α-dystroglycan result in muscular dystrophy but are also observed in certain cancers. In mice, the loss of either of two DGC proteins, dystrophin or α-sarcoglycan, is associated with a high incidence of rhabdomyosarcoma (RMS). In addition, glycosylation of α-dystroglycan is aberrant in a small cohort of human patients with RMS. Since both the glycosylation of α-dystroglycan and its function as an ECM receptor require over 18 post-translational processing enzymes, we hypothesized that understanding its role in the pathogenesis of RMS requires a complete analysis of the expression of dystroglycan-modifying enzymes and the characterization of α-dystroglycan glycosylation in the context of RMS. METHODS: A series of cell lines and biopsy samples from human and mouse RMS were analyzed for the glycosylation status of α-dystroglycan and for expression of the genes encoding the responsible enzymes, in particular those required for the addition of matriglycan. Furthermore, the glycosyltransferase LARGE1 was ectopically expressed in RMS cells to determine its effects on matriglycan modifications and the ability of α-dystroglycan to function as a laminin receptor. RESULTS: Immunohistochemistry and immunoblotting of a collection of primary RMS tumors show that although α-dystroglycan is consistently expressed and glycosylated in these tumors, α-dystroglycan lacks matriglycan and the ability to bind laminin. Similarly, in a series of cell lines derived from human and mouse RMS, α-dystroglycan lacks matriglycan modification and the ability to bind laminin. RNAseq data from RMS cell lines was analyzed for expression of the genes known to be involved in α-dystroglycan glycosylation, which revealed that, for most cell lines, the lack of matriglycan can be attributed to the downregulation of the dystroglycan-modifying enzyme LARGE1. Ectopic expression of LARGE1 in these cell cultures restored matriglycan to levels comparable to those in muscle and restored high-affinity laminin binding to α-dystroglycan. CONCLUSIONS: Collectively, our findings demonstrate that a lack of matriglycan on α-dystroglycan is a common feature in RMS due to the downregulation of LARGE1, and that ectopic expression of LARGE1 can restore matriglycan modifications and the ability of α-dystroglycan to function as an ECM receptor.


Dystroglycans/metabolism , Laminin/metabolism , N-Acetylglucosaminyltransferases/metabolism , Rhabdomyosarcoma/metabolism , Animals , Cell Line, Tumor , Glycosylation , Humans , Mice , N-Acetylglucosaminyltransferases/genetics , Protein Processing, Post-Translational , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/metabolism , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/metabolism
17.
Muscle Nerve ; 60(1): 98-103, 2019 07.
Article En | MEDLINE | ID: mdl-30990900

INTRODUCTION: UDP N-acetylglucosamine2-epimerase/N-acetylmannosamine-kinase (GNE) gene mutations can cause mostly autosomal-recessive myopathy with juvenile-onset known as hereditary inclusion-body myopathy (HIBM). METHODS: We describe a family of a patient showing an unusual HIBM with both vacuolar myopathy and myositis without quadriceps-sparing, hindering diagnosis. We show how genetic testing with functional assays, clinical transcriptome sequencing (RNA-seq) in particular, helped facilitate both the diagnosis and a better understanding of the genotype-phenotype relationship. RESULTS: We identified a novel 7.08 kb pathogenic deletion upstream of GNE using array comparative genomic hybridization (aCGH) and a common Val727Met variant. Using RNA-seq, we found only monoallelic (Val727Met-allele) expression, leading to ~50% GNE reduction in muscle. Importantly, α-dystroglycan is hypoglycosylated in the patient muscle, suggesting HIBM could be a "dystroglycanopathy." CONCLUSIONS: Our study shows the importance of considering aCGH for GNE-myopathies, and the potential of RNA-seq for faster, definitive molecular diagnosis of unusual myopathies. Muscle Nerve, 2019.


Distal Myopathies/genetics , Multienzyme Complexes/genetics , Promoter Regions, Genetic/genetics , Comparative Genomic Hybridization , Distal Myopathies/diagnosis , Distal Myopathies/metabolism , Distal Myopathies/pathology , Dystroglycans/metabolism , Family , Gene Deletion , Glycosylation , Humans , Male , Molecular Diagnostic Techniques , Quadriceps Muscle/pathology , Sequence Analysis, RNA , Young Adult
18.
mBio ; 10(2)2019 03 26.
Article En | MEDLINE | ID: mdl-30914516

Recognition of functional receptors by viruses is a key determinant for their host range, tissue tropism, and disease potential. The highly pathogenic Lassa virus (LASV) currently represents one of the most important emerging pathogens. The major cellular receptor for LASV in human cells is the ubiquitously expressed and evolutionary highly conserved extracellular matrix receptor dystroglycan (DG). In the host, DG interacts with many cellular proteins in a tissue-specific manner. The resulting distinct supramolecular complexes likely represent the functional units for viral entry, and preexisting protein-protein interactions may critically influence DG's function in productive viral entry. Using an unbiased shotgun proteomic approach, we define the largely unknown molecular composition of DG complexes present in highly susceptible epithelial cells that represent important targets for LASV during viral transmission. We further show that the specific composition of cellular DG complexes can affect DG's function in receptor-mediated endocytosis of the virus. Under steady-state conditions, epithelial DG complexes underwent rapid turnover via an endocytic pathway that shared some characteristics with DG-mediated LASV entry. However, compared to steady-state uptake of DG, LASV entry via DG occurred faster and critically depended on additional signaling by receptor tyrosine kinases and the downstream effector p21-activating kinase. In sum, we show that the specific molecular composition of DG complexes in susceptible cells is a determinant for productive virus entry and that the pathogen can manipulate the existing DG-linked endocytic pathway. This highlights another level of complexity of virus-receptor interaction and provides possible cellular targets for therapeutic antiviral intervention.IMPORTANCE Recognition of cellular receptors allows emerging viruses to break species barriers and is an important determinant for their disease potential. Many virus receptors have complex tissue-specific interactomes, and preexisting protein-protein interactions may influence their function. Combining shotgun proteomics with a biochemical approach, we characterize the molecular composition of the functional receptor complexes used by the highly pathogenic Lassa virus (LASV) to invade susceptible human cells. We show that the specific composition of the receptor complexes affects productive entry of the virus, providing proof-of-concept. In uninfected cells, these functional receptor complexes undergo dynamic turnover involving an endocytic pathway that shares some characteristics with viral entry. However, steady-state receptor uptake and virus endocytosis critically differ in kinetics and underlying signaling, indicating that the pathogen can manipulate the receptor complex according to its needs. Our study highlights a remarkable complexity of LASV-receptor interaction and identifies possible targets for therapeutic antiviral intervention.


Dystroglycans/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Lassa virus/physiology , Multiprotein Complexes/metabolism , Receptors, Virus/metabolism , Virus Internalization , Cell Line , Humans
19.
Skelet Muscle ; 8(1): 28, 2018 08 28.
Article En | MEDLINE | ID: mdl-30153853

BACKGROUND: Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far. METHODS: We utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy. RESULTS: Our electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged. CONCLUSIONS: Our combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity.


Caveolin 3/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Animals , Caveolin 3/genetics , Cytoskeleton/metabolism , Endoplasmic Reticulum Stress , Extracellular Matrix/metabolism , Humans , Mice , Muscle, Skeletal/ultrastructure , Muscular Dystrophies, Limb-Girdle/pathology , Protein Processing, Post-Translational , Proteome/genetics , Proteome/metabolism , Sarcolemma/metabolism
20.
Neuromuscul Disord ; 28(7): 592-596, 2018 07.
Article En | MEDLINE | ID: mdl-29759639

Mutations in POMT2 are most commonly associated with Walker-Warburg syndrome and Muscle-Eye-Brain disease, but can also cause limb girdle muscular dystrophy (LGMD2N). We report a case of LGMD due to a novel mutation in POMT2 unmasked by uniparental isodisomy. The patient experienced proximal muscle weakness from three years of age with minimal progression. She developed progressive contractures and underwent unilateral Achilles tenotomy. By age 11, she had borderline low left ventricular ejection fraction and mild restrictive lung disease. Muscle biopsy showed mild dystrophic changes with selective reduction in α-dystroglycan immunostaining. Sequencing of POMT2 showed a novel homozygous c.1502A>C variant that was predicted to be probably pathogenic. Fibroblast complementation studies showed lack of functional glycosylation rescued by wild-type POMT2 expression. Chromosomal microarray showed a single 15 Mb copy number neutral loss of heterozygosity on chromosome 14 encompassing POMT2. RNAseq verified homozygosity at this locus. Together, our findings indicate maternal uniparental isodisomy causing LGMD2N.


Mannosyltransferases/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Uniparental Disomy , Adolescent , Dystroglycans/metabolism , Female , Humans
...