Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Plant Phenomics ; 5: 0111, 2023.
Article En | MEDLINE | ID: mdl-38026471

Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350- to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.

2.
Plants (Basel) ; 12(5)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36903862

The relict arctic-alpine tundra provides a natural laboratory to study the potential impacts of climate change and anthropogenic disturbance on tundra vegetation. The Nardus stricta-dominated relict tundra grasslands in the Krkonose Mountains have experienced shifting species dynamics over the past few decades. Changes in species cover of the four competing grasses-Nardus stricta, Calamagrostis villosa, Molinia caerulea, and Deschampsia cespitosa-were successfully detected using orthophotos. Leaf functional traits (anatomy/morphology, element accumulation, leaf pigments, and phenolic compound profiles), were examined in combination with in situ chlorophyll fluorescence in order to shed light on their respective spatial expansions and retreats. Our results suggest a diverse phenolic profile in combination with early leaf expansion and pigment accumulation has aided the expansion of C. villosa, while microhabitats may drive the expansion and decline of D. cespitosa in different areas of the grassland. N. stricta-the dominant species-is retreating, while M. caerulea did not demonstrate significant changes in territory between 2012 and 2018. We propose that the seasonal dynamics of pigment accumulation and canopy formation are important factors when assessing potential "spreader" species and recommend that phenology be taken into account when monitoring grass species using remote sensing.

3.
Data Brief ; 39: 107600, 2021 Dec.
Article En | MEDLINE | ID: mdl-34901341

Recent advances in leaf fluorescence measurements and canopy proximal remote sensing currently enable the non-destructive collection of rich diurnal and seasonal time series, which are required for monitoring vegetation function at the temporal and spatial scales relevant to the natural dynamics of photosynthesis. Remote sensing assessments of vegetation function have traditionally used actively excited foliar chlorophyll fluorescence measurements, canopy optical reflectance data and vegetation indices (VIs), and only recently passive solar induced chlorophyll fluorescence (SIF) measurements. In general, reflectance data are more sensitive to the seasonal variations in canopy chlorophyll content and foliar biomass, while fluorescence observations more closely relate to the dynamic changes in plant photosynthetic function. With this dataset we link leaf level actively excited chlorophyll fluorescence, canopy proximal reflectance and SIF, with eddy covariance measurements of gross ecosystem productivity (GEP). The dataset was collected during the 2017 growing season on maize, using three automated systems (i.e., Monitoring Pulse-Amplitude-Modulation fluorimeter, Moni-PAM; Fluorescence Box, FloX; and from eddy covariance tower). The data were quality checked, filtered and collated to a common 30 minutes timestep. We derived vegetation indices related to canopy functioning (e.g., Photochemical Reflectance Index, PRI; Normalized Difference Vegetation Index, NDVI; Chlorophyll Red-edge, Clre) to investigate how SIF and VIs can be coupled for monitoring vegetation photosynthesis. The raw datasets and the filtered and collated data are provided to enable new processing and analyses.

4.
Ecol Appl ; 31(8): e02435, 2021 12.
Article En | MEDLINE | ID: mdl-34374152

Multiyear trends in Normalized Difference Vegetation Index (NDVI) have been used as metrics of high latitude ecosystem change based on the assumption that NDVI change is associated with ecological change, generally as changes in green vegetation amount (green leaf area index [LAI] or plant cover). Further, no change in NDVI is often interpreted as no change in these variables. Three canopy reflectance models including linear mixture model, the SAIL (Scattering from Arbitrarily Inclined Leaves) model, and the GeoSail model were used to simulate scenarios representing high latitude landscape NDVI responses to changes in LAI and plant cover. The simulations showed inconsistent NDVI responses. Clear increases in NDVI are generally associated with increases in LAI and plant cover. At higher values of LAI, the change in NDVI per unit change in LAI decreases, with very little change in spruce forest NDVI where crown cover is >50% and at the tundra-taiga ecotone with transitions from shrub tundra to spruce woodland. These lower responses may bias the interpretation of greening/browning trends in boreal forests. Variations in water or snow coverage were shown to produce outsized nonbiological NDVI responses. Inconsistencies in NDVI responses exemplify the need for care in the interpretation of NDVI change as a metric of high latitude ecosystem change, and that landscape characteristics in terms of the type of cover and its characteristics, such as the initial plant cover, must be taken into account in evaluating the significance of any observed NDVI trends.


Ecosystem , Forests , Plant Leaves , Plants , Snow , Tundra
5.
Glob Chang Biol ; 24(7): 2980-2996, 2018 07.
Article En | MEDLINE | ID: mdl-29460467

Leaf fluorescence can be used to track plant development and stress, and is considered the most direct measurement of photosynthetic activity available from remote sensing techniques. Red and far-red sun-induced chlorophyll fluorescence (SIF) maps were generated from high spatial resolution images collected with the HyPlant airborne spectrometer over even-aged loblolly pine plantations in North Carolina (United States). Canopy fluorescence yield (i.e., the fluorescence flux normalized by the light absorbed) in the red and far-red peaks was computed. This quantifies the fluorescence emission efficiencies that are more directly linked to canopy function compared to SIF radiances. Fluorescence fluxes and yields were investigated in relation to tree age to infer new insights on the potential of those measurements in better describing ecosystem processes. The results showed that red fluorescence yield varies with stand age. Young stands exhibited a nearly twofold higher red fluorescence yield than mature forest plantations, while the far-red fluorescence yield remained constant. We interpreted this finding in a context of photosynthetic stomatal limitation in aging loblolly pine stands. Current and future satellite missions provide global datasets of SIF at coarse spatial resolution, resulting in intrapixel mixture effects, which could be a confounding factor for fluorescence signal interpretation. To mitigate this effect, we propose a surrogate of the fluorescence yield, namely the Canopy Cover Fluorescence Index (CCFI) that accounts for the spatial variability in canopy structure by exploiting the vegetation fractional cover. It was found that spatial aggregation tended to mask the effective relationships, while the CCFI was still able to maintain this link. This study is a first attempt in interpreting the fluorescence variability in aging forest stands and it may open new perspectives in understanding long-term forest dynamics in response to future climatic conditions from remote sensing of SIF.


Chlorophyll/physiology , Forests , Photosynthesis/physiology , Pinus taeda/physiology , Plant Leaves/physiology , Fluorescence , North Carolina , Plant Development
6.
Remote Sens (Basel) ; 9(5): 412, 2017 May.
Article En | MEDLINE | ID: mdl-29651338

The Earth Observing One (EO-1) satellite has completed 16 years of Earth observations in early 2017. What started as a technology mission to test various new advancements turned into a science and application mission that extended many years beyond the satellite's planned life expectancy. EO-1's primary instruments are spectral imagers: Hyperion, the only civilian full spectrum spectrometer (430-2400 nm) in orbit; and the Advanced Land Imager (ALI), the prototype for Landsat-8's pushbroom imaging technology. Both Hyperion and ALI instruments have continued to perform well, but in February 2011 the satellite ran out of the fuel necessary to maintain orbit, which initiated a change in precession rate that led to increasingly earlier equatorial crossing times during its last five years. The change from EO-1's original orbit, when it was formation flying with Landsat-7 at a 10:01am equatorial overpass time, to earlier overpass times results in image acquisitions with increasing solar zenith angles (SZAs). In this study, we take several approaches to characterize data quality as SZAs increased. Our results show that for both EO-1 sensors, atmospherically corrected reflectance products are within 5 to 10% of mean pre-drift products. No marked trend in decreasing quality in ALI or Hyperion is apparent through 2016, and these data remain a high quality resource through the end of the mission.

7.
IEEE Geosci Remote Sens Lett ; 13(12): 1797-1801, 2016 Dec.
Article En | MEDLINE | ID: mdl-33005110

Spaceborne spectrometers require spectral-temporal stability characterization to aid validation of derived data products. EO-1 began orbital precession in 2011 after exhausting onboard fuel resources. In the Libya-4 Pseudo Invariant Calibration Site (PICS) this resulted in a progressive shift from a mean local equatorial crossing time of ~10:00 AM in 2011 to ~8:30 AM in late 2015. Here, we studied precession impacts to Hyperion surface reflectance products using three atmospheric correction approaches from 2004 to 2015. Combined difference estimates of surface reflectance were < 5% in the visible near infrared (VNIR) and < 10% for most of the shortwave infrared (SWIR). Combined coefficient of variation (CV) estimates in the VNIR ranged from 0.025 - 0.095, and in the SWIR ranged from 0.025 - 0.06, excluding bands near atmospheric absorption features. Reflectances produced with different atmospheric models were correlated (R 2) in VNIR from 0.25 - 0.94 and SWIR from 0.12 - 0.88 (p < 0.01). The uncertainties in all models increased with terrain slope up to 15° and selecting dune flats could reduce errors. We conclude that these data remain a useful resource over this period.

8.
Appl Opt ; 45(5): 1023-33, 2006 Feb 10.
Article En | MEDLINE | ID: mdl-16512546

Active fluorescence (F) sensing systems have long been suggested as a means to identify species composition and determine physiological status of plants. Passive F systems for large-scale remote assessment of vegetation will undoubtedly rely on solar-induced F (SIF), and this information could potentially be obtained from the Fraunhofer line depth (FLD) principle. However, understanding the relationships between the information and knowledge gained from active and passive systems remains to be addressed. Here we present an approach in which actively induced F spectral data are used to simulate and project the magnitude of SIF that can be expected from near-ground observations within selected solar Fraunhofer line regions. Comparisons among vegetative species and nitrogen (N) supply treatments were made with three F approaches: the passive FLD principle applied to telluric oxygen (O2) bands from field-acquired canopy reflectance spectra, simulated SIF from actively induced laboratory emission spectra of leaves at a series of solar Fraunhofer lines ranging from 422 to 758 nm, and examination of two dual-F excitation algorithms developed from laboratory data. From these analyses we infer that SIF from whole-plant canopies can be simulated by use of laboratory data from active systems on individual leaves and that SIF has application for the large-scale assessment of vegetation.


Agriculture/methods , Algorithms , Chlorophyll/analysis , Environmental Monitoring/methods , Oxygen/analysis , Plant Leaves/chemistry , Plant Leaves/growth & development , Spectrometry, Fluorescence/methods , Reproducibility of Results , Sensitivity and Specificity
...