Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Plants (Basel) ; 13(4)2024 Feb 15.
Article En | MEDLINE | ID: mdl-38502050

Little is known about the effect of nitrogen nutrition on seedling susceptibility to seed-borne pathogens. We have previously shown that seedlings grown under high nitrate (5 mM) conditions are less susceptible than those grown under low nitrate (0.1 mM) and ammonium (5 mM) in the Arabidopsis-Alternaria brassicicola pathosystem. However, it is not known how seedling metabolism is modulated by nitrogen nutrition, nor what is its response to pathogen infection. Here, we addressed this question using the same pathosystem and nutritive conditions, examining germination kinetics, seedling development, but also shoot ion contents, metabolome, and selected gene expression. Nitrogen nutrition clearly altered the seedling metabolome. A similar metabolomic profile was observed in inoculated seedlings grown at high nitrate levels and in not inoculated-seedlings. High nitrate levels also led to specific gene expression patterns (e.g., polyamine metabolism), while other genes responded to inoculation regardless of nitrogen supply conditions. Furthermore, the metabolites best correlated with high disease symptoms were coumarate, tyrosine, hemicellulose sugars, and polyamines, and those associated with low symptoms were organic acids (tricarboxylic acid pathway, glycerate, shikimate), sugars derivatives and ß-alanine. Overall, our results suggest that the beneficial effect of high nitrate nutrition on seedling susceptibility is likely due to nutritive and signaling mechanisms affecting developmental plant processes detrimental to the pathogen. In particular, it may be due to a constitutively high tryptophan metabolism, as well as down regulation of oxidative stress caused by polyamine catabolism.

2.
J Insect Sci ; 23(5)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37804501

Bombus vosnesenskii Radowszkowski, 1862 is one of three bumble bee species commercially available for pollination services in North America; however, little is documented about B. vosnesenskii colony life cycle or the establishment of ex situ rearing, mating, and overwintering practices. In this study, we documented nest success, colony size, and gyne production; recorded the duration of mating events; assessed overwintering survival of mated gynes; and evaluated second-generation nest success for colonies established from low- and high-elevation wild-caught B. vosnesenskii gynes. Of the 125 gynes installed, 62.4% produced brood cells (nest initiation) and 43.2% had at least 1 worker eclose (nest establishment). High-elevation B. vosnesenskii gynes had significantly higher nest initiation and establishment success than low-elevation gynes. However, low-elevation colonies were significantly larger with queens producing more gynes on average. Mating was recorded for 200 low-elevation and 37 high-elevation gynes, resulting in a mean duration of 62 and 51 min, respectively. Mated gynes were then placed into cold storage for 54 days to simulate overwintering, which resulted in 59.1% of low-elevation gynes surviving and 91.9% of high-elevation gynes surviving. For second-generation low-elevation gynes, 26.4% initiated nesting and 14.3% established nesting. Second-generation high-elevation gynes did not initiate nesting despite CO2 narcosis treatments. Overall, these results increase our understanding of B. vosnesenskii nesting, mating, and overwintering biology from 2 elevations. Furthermore, this study provides information on successful husbandry practices that can be used by researchers and conservationists to address knowledge gaps and enhance the captive rearing of bumble bees.


Hymenoptera , Bees , Animals , Pollination
3.
J Insect Physiol ; 146: 104491, 2023 04.
Article En | MEDLINE | ID: mdl-36773841

Bumble bee (genus Bombus) populations are increasingly under threat from habitat fragmentation, pesticides, pathogens, and climate change. Climate change is likely a prime driver of bumble bee declines but the mechanisms by which changing climates alter local abundance, leading to shifts in geographic range are unclear. Heat tolerance is quite high in worker bumble bees (CTmax âˆ¼ 48-55 °C), making it unlikely for them to experience these high temperatures, even with climate warming. However, the thermal tolerance of whole organisms often exceeds that of their gametes; many insects can be sterilized by exposure to temperatures well below their upper thermal tolerance. Male bumble bees are independent from the colony and may encounter more frequent temperature extremes, but whether these exposures compromise spermatozoa is still unclear. Using commercially-reared Bombus impatiens colonies, males were reared in the lab and spermatozoa were exposed (in vivo and isolated in vitro) to sublethal temperatures near lower and upper thermal tolerance (CTmin and CTmax, respectively). Heat exposure (45 °C for up to 85 min) reduced spermatozoa viability both for whole males (in vivo; control = 79.5 %, heat exposed = 58 %, heat stupor = 57.7 %) and isolated seminal vesicles (in vitro; control = 85.5 %, heat exposed = 62.9 %). Whole males exposed to 4 °C for 85 min (in vivo; control = 79.2 %, cold = 72.4 %), isolated seminal vesicles exposed to 4 °C for 85 min (in vitro; control = 85.5 %, cold = 85.1 %), and whole males exposed to for 4 °C for 48 h (in vivo; control = 88.7 %, cold = 84.3 %) did not differ significantly in spermatozoa viability. After<85 min at 45 °C, males had significantly reduced spermatozoa viability, suggesting that short-term heat waves below CTmax could strongly reduce the fertility of male bumble bees with potential population-level impacts.


Hot Temperature , Semen , Bees , Male , Animals , Temperature , Fertility , Spermatozoa
4.
Plant Methods ; 18(1): 131, 2022 Dec 08.
Article En | MEDLINE | ID: mdl-36482365

BACKGROUND: Seedling growth is an early phase of plant development highly susceptible to environmental factors such as soil nitrogen (N) availability or presence of seed-borne pathogens. Whereas N plays a central role in plant-pathogen interactions, its role has never been studied during this early phase for the interaction between Arabidopsis thaliana and Alternaria brassicicola, a seed-transmitted necrotrophic fungus. The aim of the present work was to develop an in vitro monitoring system allowing to study the impact of the fungus on A. thaliana seedling growth, while modulating N nutrition. RESULTS: The developed system consists of square plates placed vertically and filled with nutrient agar medium allowing modulation of N conditions. Seeds are inoculated after sowing by depositing a droplet of conidial suspension. A specific semi-automated image analysis pipeline based on the Ilastik software was developed to quantify the impact of the fungus on seedling aerial development, calculating an index accounting for every aspect of fungal impact, namely seedling death, necrosis and developmental delay. The system also permits to monitor root elongation. The interest of the system was then confirmed by characterising how N media composition [0.1 and 5 mM of nitrate (NO3-), 5 mM of ammonium (NH4+)] affects the impact of the fungus on three A. thaliana ecotypes. Seedling development was strongly and negatively affected by the fungus. However, seedlings grown with 5 mM NO3- were less susceptible than those grown with NH4+ or 0.1 mM NO3-, which differed from what was observed with adult plants (rosette stage). CONCLUSIONS: The developed monitoring system allows accurate determination of seedling growth characteristics (both on aerial and root parts) and symptoms. Altogether, this system could be used to study the impact of plant nutrition on susceptibility of various genotypes to fungi at the seedling stage.

5.
Article En | MEDLINE | ID: mdl-35777257

Glucosinolates and camalexin are secondary metabolites that, as phytoanticipins and phytoalexins, play a crucial role in plant defence. The present work proposes an improved analytical method for routine analysis and quantification of glucosinolates and camalexin in brassicaceous small-sized samples by using the very specific desulfation process of glucosinolates analysis and the specificity of fluorescence detection for camalexin analysis. The approach is based on a simultaneous ultrasound-assisted extraction followed by a purification on an anion-exchange column. Final analyses are conducted by HPLC-UV-MS for desulfo-glucosinolates and HPLC coupled to a fluorescence detector (HPLC-FLD) for camalexin. The method is linear for glucosinolates (50-3500 µM) and camalexin (0.025-5 µg.mL-1) with an LOD/LOQ of 3.8/12.6 µM and 0.014/0.046 µg.mL-1 respectively. The method demonstrated adequate precision, accuracy and trueness on certified reference rapeseed. A practical application of our approach was conducted on different Brassicaceae genera (Barbarea vulgaris, Brassica nigra, Capsella bursa-pastoris, Cardamine hirsuta, Coincya monensis, Sinapis arvensis, and Sisymbrium officinale) and Arabidopsis thaliana genotypes (Columbia and Wassilewskija). Futhermore, different plant organs (seeds and leaves) were analysed, previously inoculated or not with the pathogenic fungus Alternaria brassicicola.


Arabidopsis , Brassicaceae , Arabidopsis/chemistry , Brassicaceae/chemistry , Brassicaceae/metabolism , Chromatography, Liquid , Glucosinolates/analysis , Glucosinolates/chemistry , Indoles/metabolism , Thiazoles/metabolism
6.
Plants (Basel) ; 11(13)2022 Jun 28.
Article En | MEDLINE | ID: mdl-35807659

The transmission of seed-borne pathogens by the germinating seed is responsible for major crop diseases. The immune responses of the seed facing biotic invaders are poorly documented so far. The Arabidopsis thaliana/Alternaria brassicicola patho-system was used to describe at the transcription level the responses of germinating seeds and young seedling stages to infection by the necrotrophic fungus. RNA-seq analyses of healthy versus inoculated seeds at 3 days after sowing (DAS), stage of radicle emergence, and at 6 and 10 DAS, two stages of seedling establishment, identified thousands of differentially expressed genes by Alternaria infection. Response to hypoxia, ethylene and indole pathways were found to be induced by Alternaria in the germinating seeds. However, surprisingly, the defense responses, namely the salicylic acid (SA) pathway, the response to reactive oxygen species (ROS), the endoplasmic reticulum-associated protein degradation (ERAD) and programmed cell death, were found to be strongly induced only during the latter post-germination stages. We propose that this non-canonical immune response in early germinating seeds compared to early seedling establishment was potentially due to the seed-to-seedling transition phase. Phenotypic analyses of about 14 mutants altered in the main defense pathways illustrated these specific defense responses. The unexpected germination deficiency and insensitivity to Alternaria in the glucosinolate deficient mutants allow hypothesis of a trade-off between seed germination, necrosis induction and Alternaria transmission to the seedling. The imbalance of the SA and jasmonic acid (JA) pathways to the detriment of the JA also illustrated a non-canonical immune response at the first stages of the seedling.

7.
Physiol Plant ; 174(1): e13621, 2022 Jan.
Article En | MEDLINE | ID: mdl-34989007

The impact of the form of nitrogen (N) source (nitrate versus ammonium) on the susceptibility to Alternaria brassicicola, a necrotrophic fungus, has been examined in Arabidopsis thaliana at the rosette stage. Nitrate nutrition was found to increase fungal lesions considerably. There was a similar induction of defence gene expression following infection under both N nutritions, except for the phytoalexin deficient 3 gene, which was overexpressed with nitrate. Nitrate also led to a greater nitric oxide production occurring in planta during the saprophytic growth and lower nitrate reductase (NIA1) expression 7 days after inoculation. This suggests that nitrate reductase-dependent nitric oxide production had a dual role, whereby, despite its known role in the generic response to pathogens, it affected plant metabolism, and this facilitated fungal infection. In ammonium-grown plants, infection with A. brassicicola induced a stronger gene expression of ammonium transporters and significantly reduced the initially high ammonium content in the leaves. There was a significant interaction between N source and inoculation (presence versus absence of the fungus) on the total amino acid content, while N nutrition reconfigured the spectrum of major amino acids. Typically, a higher content of total amino acid, mainly due to a stronger increase in asparagine and glutamine, is observed under ammonium nutrition while, in nitrate-fed plants, glutamate was the only amino acid which content increased significantly after fungal inoculation. N nutrition thus appears to control fungal infection via a complex set of signalling and nutritional events, shedding light on how nitrate availability can modulate disease susceptibility.


Arabidopsis Proteins , Arabidopsis , Alternaria , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Nitrogen/metabolism , Plant Diseases/microbiology
8.
Cryobiology ; 102: 136-139, 2021 10.
Article En | MEDLINE | ID: mdl-34111443

This study evaluates the efficacy of a cryopreservation protocol for spermatozoa derived from the accessory testis of male Bombus impatiens. It is also the first report of successful cryopreservation of bumble bee spermatozoa. The spermatozoa viability was compared with the similarly treated honey bee spermatozoa derived from its accessory testis. The semen was frozen using a yolk-free non-activating buffer containing dimethyl sulphoxide and stored in liquid nitrogen for 24 h to ~14 days. Thereafter, the frozen samples were thawed rapidly and assessed by staining with live/dead differentiating fluorescent dyes. Semen viability in cryopreserved samples (55.8 ± 14.0%) was significantly different than controls (96.2 ± 10.5%). Similar assessment with A. mellifera resulted in 82.2 ± 7.0% viable cryopreserved spermatozoa versus 99.4 ± 0.1% in controls. A similar proportion of the sperm cells were also capable of motility upon dilution of the extender medium with phosphate buffered saline. The proportion of viable accessory testis derived sperm cells obtained post-cryopreservation was estimated to be sufficient to initiate long term storage and artificial insemination programs.


Cryopreservation , Semen Preservation , Animals , Bees , Cryopreservation/methods , Insemination, Artificial , Male , Semen Preservation/veterinary , Seminal Vesicles , Sperm Motility , Spermatozoa
9.
Front Plant Sci ; 11: 611643, 2020.
Article En | MEDLINE | ID: mdl-33552104

Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.

10.
Front Microbiol ; 10: 1969, 2019.
Article En | MEDLINE | ID: mdl-31543870

Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.

11.
Genome Announc ; 6(6)2018 Feb 08.
Article En | MEDLINE | ID: mdl-29439047

Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1 Mb. The assembled genome was 31,036,461 bp in length, with a G+C content of 50.85%.

12.
PeerJ ; 4: e1923, 2016.
Article En | MEDLINE | ID: mdl-27077013

Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc) 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences) and fungal (ITS1) diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.

13.
Front Plant Sci ; 6: 414, 2015.
Article En | MEDLINE | ID: mdl-26089832

Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.

14.
Plant Methods ; 11: 24, 2015.
Article En | MEDLINE | ID: mdl-25866549

BACKGROUND: Image analysis is increasingly used in plant phenotyping. Among the various imaging techniques that can be used in plant phenotyping, chlorophyll fluorescence imaging allows imaging of the impact of biotic or abiotic stresses on leaves. Numerous chlorophyll fluorescence parameters may be measured or calculated, but only a few can produce a contrast in a given condition. Therefore, automated procedures that help screening chlorophyll fluorescence image datasets are needed, especially in the perspective of high-throughput plant phenotyping. RESULTS: We developed an automatic procedure aiming at facilitating the identification of chlorophyll fluorescence parameters impacted on leaves by a stress. First, for each chlorophyll fluorescence parameter, the procedure provides an overview of the data by automatically creating contact sheets of images and/or histograms. Such contact sheets enable a fast comparison of the impact on leaves of various treatments, or of the contrast dynamics during the experiments. Second, based on the global intensity of each chlorophyll fluorescence parameter, the procedure automatically produces radial plots and box plots allowing the user to identify chlorophyll fluorescence parameters that discriminate between treatments. Moreover, basic statistical analysis is automatically generated. Third, for each chlorophyll fluorescence parameter the procedure automatically performs a clustering analysis based on the histograms. This analysis clusters images of plants according to their health status. We applied this procedure to monitor the impact of the inoculation of the root parasitic plant Phelipanche ramosa on Arabidopsis thaliana ecotypes Col-0 and Ler. CONCLUSIONS: Using this automatic procedure, we identified eight chlorophyll fluorescence parameters discriminating between the two ecotypes of A. thaliana, and five impacted by the infection of Arabidopsis thaliana by P. ramosa. More generally, this procedure may help to identify chlorophyll fluorescence parameters impacted by various types of stresses. We implemented this procedure at http://www.phenoplant.org freely accessible to users of the plant phenotyping community.

15.
Proteomics ; 14(13-14): 1639-45, 2014 Jul.
Article En | MEDLINE | ID: mdl-24825570

This study describes the gel-free phosphoproteomic analysis of the phytopathogenic fungi Alternaria brassicicola and Botrytis cinerea grown in vitro under nonlimiting conditions. Using a combination of strong cation exchange and IMAC prior to LC-MS, we identified over 1350 phosphopeptides per fungus representing over 800 phosphoproteins. The preferred phosphorylation sites were found on serine (>80%) and threonine (>15%), whereas phosphorylated tyrosine residues were found at less than 1% in A. brassicicola and at a slightly higher ratio in B. cinerea (1.5%). Biological processes represented principally among the phoshoproteins were those involved in response and transduction of stimuli as well as in regulation of cellular and metabolic processes. Most known elements of signal transduction were found in the datasets of both fungi. This study also revealed unexpected phosphorylation sites in histidine kinases, a category overrepresented in filamentous ascomycetes compared to yeast. The data have been deposited to the ProteomeXchange database with identifier PXD000817 (http://proteomecentral.proteomexchange.org/dataset/PXD000817).


Alternaria/growth & development , Botrytis/growth & development , Fungal Proteins/metabolism , Phosphoproteins/metabolism , Alternaria/chemistry , Alternaria/metabolism , Amino Acid Sequence , Axenic Culture , Botrytis/chemistry , Botrytis/metabolism , Fungal Proteins/chemistry , Mass Spectrometry , Molecular Sequence Data , Phosphoproteins/chemistry , Proteomics , Signal Transduction
16.
PLoS One ; 8(10): e75143, 2013.
Article En | MEDLINE | ID: mdl-24098369

In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3), harbouring the asparagine-proline-arginine (DPR) signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK) pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.


Alternaria/physiology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Plants/microbiology , Stress, Physiological , Alternaria/cytology , Alternaria/drug effects , Alternaria/metabolism , Alternative Splicing , Amino Acid Sequence , Freezing , Fungal Proteins/genetics , Gene Expression Regulation, Fungal/drug effects , Genome, Fungal/genetics , Molecular Sequence Data , Mutation , Oxidative Stress/drug effects , Peroxisomes/drug effects , Peroxisomes/metabolism , RNA, Messenger/genetics , Salts/pharmacology , Seeds/microbiology , Stress, Physiological/drug effects , Transcription, Genetic/drug effects
17.
Plant Methods ; 8(1): 16, 2012 May 09.
Article En | MEDLINE | ID: mdl-22571391

BACKGROUND: Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase. RESULTS: Here we report on setting up a new pathosystem that could facilitate the study of fungal seed transmission. Reproductive organs of Arabidopsis thaliana were inoculated with Alternaria brassicicola conidia. Parameters (floral vs fruit route, seed collection date, plant and silique developmental stages) that could influence the seed transmission efficiency were tested to define optimal seed infection conditions. Microscopic observations revealed that the fungus penetrates siliques through cellular junctions, replum and stomata, and into seed coats either directly or through cracks. The ability of the osmosensitive fungal mutant nik1Δ3 to transmit to A. thaliana seeds was analyzed. A significant decrease in seed transmission rate was observed compared to the wild-type parental strain, confirming that a functional osmoregulation pathway is required for efficient seed transmission of the fungus. Similarly, to test the role of flavonoids in seed coat protection against pathogens, a transparent testa Arabidopsis mutant (tt4-1) not producing any flavonoid was used as host plant. Unexpectedly, tt4-1 seeds were infected to a significantly lower extent than wild-type seeds, possibly due to over-accumulation of other antimicrobial metabolites. CONCLUSIONS: The Arabidopsis thaliana-Alternaria brassicicola pathosystem, that have been widely used to study plant-pathogen interactions during the vegetative phase, also proved to constitute a suitable model pathosystem for detailed analysis of plant-pathogen interactions during the reproductive phase. We demonstrated that it provides an excellent system for investigating the impact of different fungal or plant mutations on the seed transmission process and therefore paves the way towards future high-throughput screening of both Arabidopsis and fungal mutant.

18.
Cell Microbiol ; 13(1): 62-80, 2011 Jan.
Article En | MEDLINE | ID: mdl-20812995

Camalexin, the characteristic phytoalexin of Arabidopsis thaliana, inhibits growth of the fungal necrotroph Alternaria brassicicola. This plant metabolite probably exerts its antifungal toxicity by causing cell membrane damage. Here we observed that activation of a cellular response to this damage requires cell wall integrity (CWI) and the high osmolarity glycerol (HOG) pathways. Camalexin was found to activate both AbHog1 and AbSlt2 MAP kinases, and activation of the latter was abrogated in a AbHog1 deficient strain. Mutant strains lacking functional MAP kinases showed hypersensitivity to camalexin and brassinin, a structurally related phytoalexin produced by several cultivated Brassica species. Enhanced susceptibility to the membrane permeabilization activity of camalexin was observed for MAP kinase deficient mutants. These results suggest that the two signalling pathways have a pivotal role in regulating a cellular compensatory response to preserve cell integrity during exposure to camalexin. AbHog1 and AbSlt2 deficient mutants had reduced virulence on host plants that may, at least for the latter mutants, partially result from their inability to cope with defence metabolites such as indolic phytoalexins. This constitutes the first evidence that a phytoalexin activates fungal MAP kinases and that outputs of activated cascades contribute to protecting the fungus against antimicrobial plant metabolites.


Alternaria/drug effects , Alternaria/physiology , Antifungal Agents/toxicity , Cell Wall/physiology , Glycerol/metabolism , Sesquiterpenes/toxicity , Stress, Physiological , Adaptation, Physiological , Alternaria/growth & development , Arabidopsis/chemistry , Brassica/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Fungal/drug effects , Microbial Sensitivity Tests , Models, Biological , Osmolar Concentration , Phylogeny , Sequence Homology, Amino Acid , Virulence , Phytoalexins
19.
Appl Environ Microbiol ; 75(1): 127-34, 2009 Jan.
Article En | MEDLINE | ID: mdl-19011080

We have shown that the plant pathogen Alternaria brassicicola exhibited very high susceptibility to ambruticin VS4 and to a lesser extent to the phenylpyrrole fungicide fludioxonil. These compounds are both derived from natural bacterial metabolites with antifungal properties and are thought to exert their toxicity by interfering with osmoregulation in filamentous fungi. Disruption of the osmosensor group III histidine kinase gene AbNIK1 (for A. brassicola NIK1) resulted in high levels of resistance to ambruticin and fludioxonil, while a mutant isolate characterized by a single-amino-acid substitution in the HAMP domain of the kinase only exhibited moderate resistance. Moreover, the natural resistance of Saccharomyces cerevisiae to these antifungal molecules switched to sensitivity in strains expressing AbNIK1p. We also showed that exposure to fludioxonil and ambruticin resulted in abnormal phosphorylation of a Hog1-like mitogen-activated protein kinase (MAPK) in A. brassicicola. Parallel experiments carried out with wild-type and mutant isolates of Neurospora crassa revealed that, in this species, ambruticin susceptibility was dependent on the OS1-RRG1 branch of the phosphorelay pathway downstream of the OS2 MAPK cascade but independent of the yeast Skn7-like response regulator RRG2. These results show that the ability to synthesize a functional group III histidine kinase is a prerequisite for the expression of ambruticin and phenylpyrrole susceptibility in A. brassicicola and N. crassa and that, at least in the latter species, improper activation of the high-osmolarity glycerol-related pathway could explain their fungicidal properties.


Alternaria/drug effects , Antifungal Agents/pharmacology , Protein Kinases/metabolism , Amino Acid Substitution/genetics , Dioxoles/pharmacology , Gene Deletion , Genetic Complementation Test , Histidine Kinase , Mutagenesis, Insertional , Mutation, Missense , Neurospora crassa/drug effects , Neurospora crassa/genetics , Protein Kinases/genetics , Pyrans/pharmacology , Pyrroles/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics
20.
Plant Physiol ; 145(1): 62-74, 2007 Sep.
Article En | MEDLINE | ID: mdl-17631523

A second mannitol transporter, AgMaT2, was identified in celery (Apium graveolens L. var. dulce), a species that synthesizes and transports mannitol. This transporter was successfully expressed in two different heterologous expression systems: baker's yeast (Saccharomyces cerevisiae) cells and tobacco (Nicotiana tabacum) plants (a non-mannitol-producing species). Data indicated that AgMaT2 works as an H(+)/mannitol cotransporter with a weak selectivity toward other polyol molecules. When expressed in tobacco, AgMaT2 decreased the sensitivity to the mannitol-secreting pathogenic fungi Alternaria longipes, suggesting a role for polyol transporters in defense mechanisms. In celery, in situ hybridization showed that AgMaT2 was expressed in the phloem of leaflets, petioles from young and mature leaves, floral stems, and roots. In the phloem of petioles and leaflets, AgMaT2, as localized with specific antibodies, was present in the plasma membrane of three ontologically related cell types: sieve elements, companion cells, and phloem parenchyma cells. These new data are discussed in relation to the physiological role of AgMaT2 in regulating mannitol fluxes in celery petioles.


Apium/metabolism , Mannitol/metabolism , Membrane Transport Proteins/metabolism , Phloem/metabolism , Plant Proteins/metabolism , Alternaria/physiology , Apium/cytology , Apium/genetics , Cloning, Molecular , Gene Expression , Membrane Transport Proteins/genetics , Molecular Sequence Data , Phloem/cytology , Plant Diseases , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology
...