Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 213(1): 107693, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33387655

RESUMEN

We report the electron microscopy-based analysis of the major lateral tooth of the limpet Colisella subrugosa during early and intermediate stages of development. We aimed to analyze the structural relationship among the needle-like crystals of the iron oxide goethite, the amorphous silica phase that forms the tooth base and occupy inter-crystalline spaces in the cusp, and the chitin fibers of the matrix. Goethite crystals followed the three dimensional organization pattern of the chitin fibers in the cusp. In the tooth base, spherical individual silica granules were found in regions where the chitin fibers cross. The spherical granules near the interface between the tooth base and the cusp (junction zone) formed an almost continuous medium that could easily be ultrathin-sectioned for further analysis. By contrast, the nearby silica-rich region localized on the other side of the junction zone contained needle-like goethite crystals immersed in the matrix and presented a conchoidal fracture. The chitin fibers from the silica granules of the tooth base were dotted or undulating in projection with a periodicity of about 6 nm when observed by high magnification transmission electron microscopy. Very thin goethite crystals were present in the base of the cusp near the junction zone surrounded by silica. On several occasions, crystals presented internal thin straight white lines parallel to the major axis, indicating a possible growth around fibers. We propose that silica and iron oxide phases mineralization may occur simultaneously at least for some period and that silica moderates the dimensions of the iron oxide crystals.


Asunto(s)
Minerales/química , Dióxido de Silicio/química , Diente/química , Animales , Quitina/química , Compuestos Férricos/química , Gastrópodos/química , Compuestos de Hierro/química , Microscopía Electrónica de Transmisión/métodos
2.
Cell Tissue Res ; 357(3): 793-801, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24859219

RESUMEN

We evaluate the effects of strontium ranelate on the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures, a system that gave us the advantage of obtaining mineral samples produced exclusively during treatment. Cells were treated with strontium ranelate at concentrations of 0.05 and 0.5 mM Sr(2+). Mineral substances were isolated and analyzed by using a combination of methods: Fourier transform infrared spectroscopy, solid-state (1)H nuclear magnetic resonance, X-ray diffraction, micro-Raman spectroscopy and energy dispersive X-ray spectroscopy. The minerals produced in all cell cultures were typical bone-like apatites. No changes occurred in the local structural order or crystal size of the minerals. However, we noticed several relevant changes in the mineral produced under 0.5 mM Sr(2+): (1) increase in type-B CO3 (2-) substitutions, which often lead to the creation of vacancies in Ca(2+) and OH(-) sites; (2) incorporation of Sr(2+) by substituting slightly less than 10 % of Ca(2+) in the apatite crystal lattice, resulting in an increase in both lattice parameters a and c; (3) change in the PO4 (3-) environments, possibly because of the expansion of the lattice; (4) the Ca/P ratio of this mineral was reduced, but its (Ca+Sr)/P ratio was the same as that of the control, indicating that its overall cation/P ratio was preserved. Thus, strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.


Asunto(s)
Apatitas/química , Huesos/química , Osteoblastos/citología , Tiofenos/farmacología , Animales , Carbonatos/análisis , Cationes , Células Cultivadas , Cristalización , Ratones , Osteoblastos/efectos de los fármacos , Fosfatos/análisis , Espectroscopía de Protones por Resonancia Magnética , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Difracción de Rayos X
3.
Acta Biomater ; 10(9): 3875-84, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24487057

RESUMEN

We investigated the ultrastructure and crystallographic orientation of spicules from the calcareous sponge Paraleucilla magna (subclass Calcaronea) by transmission and scanning electron microscopy using two different methods of sample preparation: ultramicrotomy and focused ion beam (FIB). It was found that the unpaired actine from the spicules was oriented in the [211] zone axis. The plane that contains the unpaired actine and divides symmetrically the paired actines is the (-120). This plane is a mirror plane of the hexagonal lattice system. All the spicule types analyzed presented the same crystallographic orientation. Electron nanodiffraction maps from 4µm×4µm regions prepared by FIB showed disorientation of <2° between diffraction patterns obtained from neighbor regions, indicating the presence of a unique, highly aligned calcite crystalline phase. Among the eight FIB sections obtained, four presented high pore density. In one section perpendicular to the actine axis pores were observed only in the center of the spicule aligned in a circular pattern and surrounded by a faint circular contour with a larger radius. The presence of amorphous carbon representative of organic molecules detected by electron energy loss spectroscopy was correlated neither with porosity nor with specific lattice planes.


Asunto(s)
Carbonato de Calcio/química , Poríferos/anatomía & histología , Poríferos/química , Animales , Carbono/química , Cristalografía , Poríferos/ultraestructura , Porosidad , Análisis Espectral
4.
Calcif Tissue Int ; 91(3): 186-95, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22806682

RESUMEN

The aim of this study was to evaluate the strontium incorporation into specific bones and teeth of rats treated with strontium ranelate. The relative strontium levels [Sr/(Ca + Sr) ratio] were obtained by synchrotron radiation micro X-ray fluorescence. The incisor teeth were further examined by energy dispersive X-ray spectroscopy (EDS) in a scanning electron microscope. The isolated mineral phase was investigated by EDS in a transmission electron microscope and X-ray diffraction. The strontium content was markedly increased in animals treated with strontium ranelate, with different incorporation levels found among specific bones, regions within the same bone and teeth. The highest strontium levels were observed in the iliac crest, mandible and calvaria, while the lowest were observed in the femoral diaphysis, lumbar vertebrae, rib and alveolar bone. The strontium content was higher in the femoral neck than in the diaphysis. The strontium levels also varied within the alveolar bone. High levels of strontium were found in the incisor tooth, with values similar to those in the iliac crest. Strontium was observed in both enamel and dentin. The strontium content of the molar tooth was negligible. Strontium was incorporated into the mineral substance, with up to one strontium replacing one out of 10 calcium ions within the apatite crystal lattice. The mineral from treated animals presented increased lattice parameters, which might be associated to their bone strontium contents. In conclusion, the incorporation of strontium occurred in different levels into distinct bones, regions within the same bone and teeth of rats treated with strontium ranelate.


Asunto(s)
Conservadores de la Densidad Ósea/farmacocinética , Huesos/metabolismo , Compuestos Organometálicos/farmacocinética , Estroncio/metabolismo , Tiofenos/farmacocinética , Diente/metabolismo , Animales , Densidad Ósea , Ratas , Ratas Wistar , Espectrometría por Rayos X , Distribución Tisular , Difracción de Rayos X
5.
Phys Biol ; 7(4): 046016, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21212495

RESUMEN

Magnetotactic bacteria produce magnetosomes, which are magnetic particles enveloped by biological membranes, in a highly controlled mineralization process. Magnetosomes are used to navigate in magnetic fields by a phenomenon called magnetotaxis. Two levels of organization and control are recognized in magnetosomes. First, magnetotactic bacteria create a spatially distinct environment within vesicles defined by their membranes. In the vesicles, the bacteria control the size, composition and purity of the mineral content of the magnetic particles. Unique crystal morphologies are produced in magnetosomes as a consequence of this bacterial control. Second, magnetotactic bacteria organize the magnetosomes in chains within the cell body. It has been shown in a particular case that the chains are positioned within the cell body in specific locations defined by filamentous cytoskeleton elements. Here, we describe an additional level of organization of the magnetosome chains in uncultured magnetotactic cocci found in marine and freshwater sediments. Electron microscopy analysis of the magnetosome chains using a goniometer showed that the magnetic crystals in both types of bacteria are not oriented at random along the crystal chain. Instead, the magnetosomes have specific orientations relative to the other magnetosomes in the chain. Each crystal is rotated either 60°, 180° or 300° relative to their neighbors along the chain axis, causing the overlapping of the (1 1 1) and [Formula in text] capping faces of neighboring crystals. We suggest that genetic determinants that are not present or active in bacteria with magnetosomes randomly rotated within a chain must be present in bacteria that organize magnetosomes so precisely. This particular organization may also be used as an indicative biosignature of magnetosomes in the study of magnetofossils in the cases where this symmetry is observed.


Asunto(s)
Magnetosomas/ultraestructura , Bacterias/metabolismo , Bacterias/ultraestructura , Cristalización , Óxido Ferrosoférrico/metabolismo , Magnetismo , Magnetosomas/química , Microscopía Electrónica
6.
Forensic Sci Int ; 177(1): e9-17, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17764860

RESUMEN

The exposition to heavy metal-rich airborne due to fire practicing has forced to the development of heavy metal-free environmental ammunition primers all over the world. Here we characterize the GSR elements present in the Brazilian lead-free ammunition produced by Companhia Brasileira de Cartuchos (CBC) and commercialized by MagTech in the U.S. and Europe under the name CleanRange centerfire cartridges. Both first and second generations of CleanRange in calibers 9 mm Luger, .40 S&W, .380 AUTO and .38 SPL were analyzed and compared to regular Brazilian CBC ammunition by scanning electron microscopy/energy dispersive spectroscopy. Differences in composition and morphology of GSR particles from the two generations of CleanRange were observed. The first generation ammunition (found in Europe) presented spherical particles, being strontium the only unique element detected. The second generation (found in the U.S.) produced irregular particles composed mostly by potassium, aluminum, silicon and calcium. We can conclude that identification of GSR derived from CBC second generation lead-free ammunition in suspects' hands may be impossible without the addition of a distinct metallic taggant in the primer composition by the manufacturer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA