Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 321: 138144, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36804495

RESUMEN

The use of antibiotics in the livestock sector has resulted in the entry of these drugs into the soil matrix through the disposal of manure as an organic amendment. To define the fate of these drugs, it is necessary to evaluate kinetic aspects regarding transport in the soil-solution. The aim of this paper is to evaluate the adsorption kinetic parameters of Ciprofloxacin (CIPRO) in Ultisol and Andisol soil which allows obtaining main kinetic parameters (pseudo-first and pseudo-second order models) and to establish the solute transport mechanism by applying kinetic models such as the Elovich equation, Intraparticle diffusion (IPD) and, the Two-site non-equilibrium models (TSNE). The adsorption kinetics of this fluoroquinolone (FQ), on both soils derived from volcanic ashes, is developed using electrochemical techniques for their determination. The experimental amount of CIPRO adsorbed over time (Qt) data best fit with the pseudo-second order kinetic models; R2 = 0.9855, Ɛ = 10.17% and R2 = 0.9959, Ɛ = 10.77% for Ultisol and Andisol, respectively; and where CIPRO adsorption was considered time dependent for both soils but the lower adsorption capacity in Ultisol; with 17.6 ± 2.8 µmol g-1; which could mean a greater risk in environmental. Subsequently, applying models to describe solute transport mechanisms showed differences in the CIPRO adsorption extent for the fast and slow phases. Adsorption isotherms were evaluated, where Ultisol occurs on heterogenous sites as multilayers and Andisol by monolayer with similar Qmax. Finally, the socio-economic impact of antibiotic usage is presented, giving the importance of antibiotics in the livestock sector and their effects on human health.


Asunto(s)
Ciprofloxacina , Suelo , Humanos , Adsorción , Antibacterianos , Factores Socioeconómicos , Cinética
2.
Angew Chem Int Ed Engl ; 59(51): 22938-22942, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857426

RESUMEN

This study highlights the importance of following a strict protocol for Nafion membrane pretreatment for electrochemical nitrogen reduction reaction experiments. Atmospheric ammonia pollution can be introduced to the experimental setup through membranes and interpreted falsely as catalysis product from N2 . The sources of ammonia contamination vary drastically between locations worldwide and even within the same location between days depending on temperature, wind direction, fertilizer use, and manure accumulation in its vicinity. The study shows that significant amounts of ammonium is accumulated in the membranes after commonly practiced pretreatment methods, where the amount depends on the ammonia concentration in the surrounding of the experiment. Therefore, we introduce a new pretreatment method which removes all the ammonium in the membrane. The membranes can be stored for several days but a short final step in the method needs to be carried out right before NRR experiments.


Asunto(s)
Amoníaco/análisis , Polímeros de Fluorocarbono/química , Nitrógeno/química , Técnicas Electroquímicas , Oxidación-Reducción , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA