Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(4)2021 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668529

RESUMEN

Several antidepressants inhibit nicotinic acetylcholine receptors (nAChRs) in a non-competitive and voltage-dependent fashion. Here, we asked whether antidepressants with a different structure and pharmacological profile modulate the rat α7 nAChR through a similar mechanism by interacting within the ion-channel. We applied electrophysiological (recording of the ion current elicited by choline, ICh, which activates α7 nAChRs from rat CA1 hippocampal interneurons) and in silico approaches (homology modeling of the rat α7 nAChR, molecular docking, molecular dynamics simulations, and binding free energy calculations). The antidepressants inhibited ICh with the order: norfluoxetine ~ mirtazapine ~ imipramine < bupropion ~ fluoxetine ~ venlafaxine ~ escitalopram. The constructed homology model of the rat α7 nAChR resulted in the extracellular vestibule and the channel pore is highly negatively charged, which facilitates the permeation of cations and the entrance of the protonated form of antidepressants. Molecular docking and molecular dynamics simulations were carried out within the ion-channel of the α7 nAChR, revealing that the antidepressants adopt poses along the receptor channel, with slightly different binding-free energy values. Furthermore, the inhibition of ICh and free energy values for each antidepressant-receptor complex were highly correlated. Thus, the α7 nAChR is negatively modulated by a variety of antidepressants interacting in the ion-channel.


Asunto(s)
Antidepresivos/química , Antidepresivos/farmacología , Canales Iónicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Antidepresivos/clasificación , Colina/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ratas , Homología Estructural de Proteína , Relación Estructura-Actividad , Termodinámica
2.
Sci Rep ; 10(1): 18151, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097808

RESUMEN

High order oligomers are crucial for normal cell physiology, and protein function perturbed by missense mutations underlies several autosomal dominant diseases. Dynamin-2 is one of such protein forming helical oligomers that catalyze membrane fission. Mutations in this protein, where R465W is the most frequent, cause dominant centronuclear myopathy, but the molecular mechanisms underpinning the functional modifications remain to be investigated. To unveil the structural impact of this mutation in dynamin-2, we used full-atom molecular dynamics simulations and coarse-grained models and built dimers and helices of wild-type (WT) monomers, mutant monomers, or both WT and mutant monomers combined. Our results show that the mutation R465W causes changes in the interactions with neighbor amino acids that propagate through the oligomer. These new interactions perturb the contact between monomers and favor an extended conformation of the bundle signaling element (BSE), a dynamin region that transmits the conformational changes from the GTPase domain to the rest of the protein. This extended configuration of the BSE that is only relevant in the helices illustrates how a small change in the microenvironment surrounding a single residue can propagate through the oligomer structures of dynamin explaining how dominance emerges in large protein complexes.


Asunto(s)
Dinamina II/genética , Miopatías Estructurales Congénitas/patología , Dominios Proteicos/genética , Multimerización de Proteína/genética , Arginina/genética , Cristalografía por Rayos X , Dinamina II/metabolismo , Dinamina II/ultraestructura , Humanos , Simulación de Dinámica Molecular , Mutación Missense , Miopatías Estructurales Congénitas/genética , Conformación Proteica en Hélice alfa/genética , Triptófano/genética
3.
Pflugers Arch ; 468(5): 909-18, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26769242

RESUMEN

Gap-junction channels (GJCs) are formed by head-to-head association of two hemichannels (HCs, connexin hexamers). HCs and GJCs are permeable to ions and hydrophilic molecules of up to Mr ~1 kDa. Hearing impairment of genetic origin is common, and mutations of connexin 26 (Cx26) are its major cause. We recently identified two novel Cx26 mutations in hearing-impaired subjects, L10P and G109V. L10P forms functional GJCs with slightly altered voltage dependence and HCs with decrease ATP/cationic dye selectivity. G109V does not form functional GJCs, but forms functional HCs with enhanced extracellular Ca(2+) sensitivity and subtle alterations in voltage dependence and ATP/cationic dye selectivity. Deafness associated with G109V could result from decreased GJCs activity, whereas deafness associated to L10P may have a more complex mechanism that involves changes in HC permeability.


Asunto(s)
Conexinas/metabolismo , Sordera/genética , Mutación , Potenciales de Acción , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Conexina 26 , Conexinas/química , Conexinas/genética , Células HeLa , Humanos , Activación del Canal Iónico , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA