Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiat Environ Biophys ; 54(1): 91-102, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25428113

RESUMEN

Provided that a selective accumulation of (10)B-containing compounds is introduced in tumor cells, following irradiation by thermal neutrons produces high-LET alpha-particles ((4)He) and recoiling lithium-7 ((7)Li) nuclei emitted during the capture of thermalized neutrons (0.025 eV) from (10)B. To estimate the biological effectiveness of this boron neutron capture [(10)B(n,α)(7)Li] reaction, the chromosome aberration assay and the flow cytometry apoptosis assay were applied. At the presence of the clinically used compounds BSH (sodium borocaptate) and BPA (p-boronophenylalanine), human lymphocytes were irradiated by sub-thermal neutrons. For analyzing chromosome aberrations, human lymphocytes were exposed to thermally equivalent neutron fluences of 1.82 × 10(11) cm(-2) or 7.30 × 10(11) cm(-2) (corresponding to thermal neutron doses of 0.062 and 0.248 Gy, respectively) in the presence of 0, 10, 20, and 30 ppm of BSH or BPA. Since the kerma coefficient of blood increased by 0.864 × 10(-12) Gy cm(2) per 10 ppm of (10)B, the kerma coefficients in blood increase from 0.34 × 10(-12) cm(2) (blood without BSH or BPA) up to 2.93 × 10(-12) Gy cm(2) in the presence of 30 ppm of (10)B. For the (10)B(n, α)(7)Li reaction, linear dose-response relations for dicentrics with coefficients α = 0.0546 ± 0.0081 Gy(-1) for BSH and α = 0.0654 ± 0.0075 Gy(-1) for BPA were obtained at 0.062 Gy as well as α = 0.0985 ± 0.0284 Gy(-1) for BSH and α = 0.1293 ± 0.0419 Gy(-1) for BPA at 0.248 Gy. At both doses, the corresponding (10)B(n, α)(7)Li reactions from BSH and BPA are not significantly different. A linear dose-response relation for dicentrics also was obtained for the induction of apoptosis by the (10)B(n, α)(7)Li reaction at 0.248 Gy. The linear coefficients α = 0.0249 ± 0.0119 Gy(-1) for BSH and α = 0.0334 ± 0.0064 Gy(-1) for BPA are not significantly different. Independently of the applied thermal neutron doses of 0.062 Gy or 0.248 Gy, the (10)B(n, α)(7)Li reaction from 30 ppm BSH or BPA induced an apparent RBE of about 2.2 for the production of dicentrics as compared to exposure to thermal neutrons alone. Since the apparent RBE value is defined as the product of the RBE of a thermal neutron dose alone times a boron localization factor which depends on the concentration of a (10)B-containing compound, this localization factor determines the biological effectiveness of the (10)B(n, α)(7)Li reaction.


Asunto(s)
Borohidruros/farmacología , Compuestos de Boro/farmacología , Terapia por Captura de Neutrón de Boro , Linfocitos/efectos de los fármacos , Linfocitos/efectos de la radiación , Fenilalanina/análogos & derivados , Fármacos Sensibilizantes a Radiaciones/farmacología , Compuestos de Sulfhidrilo/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Boro , Aberraciones Cromosómicas , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Isótopos , Transferencia Lineal de Energía , Litio , Masculino , Neutrones , Fenilalanina/farmacología
3.
Radiat Environ Biophys ; 52(1): 113-21, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23263356

RESUMEN

The induction of chromosome aberrations in human lymphocytes irradiated in vitro with slow neutrons was examined to assess the maximum low-dose RBE (RBE(M)) relative to (60)Co γ-rays. For the blood irradiations, cold neutron beam available at the prompt gamma activation analysis facility at the Munich research reactor FRM II was used. The given flux of cold neutrons can be converted into a thermally equivalent one. Since blood was taken from the same donor whose blood had been used for previous irradiation experiments using widely varying neutron energies, the greatest possible accuracy was available for such an estimation of the RBE(M) avoiding the inter-individual variations or differences in methodology usually associated with inter-laboratory comparisons. The magnitude of the coefficient α of the linear dose-response relationship (α = 0.400 ± 0.018 Gy(-1)) and the derived RBE(M) of 36.4 ± 13.3 obtained for the production of dicentrics by thermal neutrons confirm our earlier observations of a strong decrease in α and RBE(M) with decreasing neutron energy lower than 0.385 MeV (RBE(M) = 94.4 ± 38.9). The magnitude of the presently estimated RBE(M) of thermal neutrons is-with some restrictions-not significantly different to previously reported RBE(M) values of two laboratories.


Asunto(s)
Aberraciones Cromosómicas , Rayos gamma , Linfocitos/efectos de la radiación , Neutrones , Células Cultivadas , Humanos , Masculino , Efectividad Biológica Relativa
4.
Phys Rev Lett ; 105(25): 257206, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-21231624

RESUMEN

Rare earth doping is the key strategy to increase the Curie temperature (T(C)) of the ferromagnetic semiconductor EuO. The interplay between doping and charge carrier density (n), and the limit of the T(C) increase, however, are yet to be understood. We report measurements of n and T(C) of Gd-doped EuO over a wide range of doping levels. The results show a direct correlation between n and T(C), with both exhibiting a maximum at high doping. On average, less than 35% of the dopants act as donors, raising the question about the limit to increasing T(C).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA