Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(12): 5466-5477, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38414337

RESUMEN

The significant attention drawn to IrIII-complexes in recent years has boosted the development of new compounds with advantageous photophysical features. However, obtaining IrIII deep-red-emitting complexes with long lived excited state, high colour purity and high quantum yield (Φ) remains a challenging task. To address this issue, this study reports the synthesis and photophysical investigation of three novel zwitterionic complexes, [Ir(C^N)2bqdc] (C^N = ppy, phq, and bzq), with ppy = 2-phenylpyridine (Ir-pb), phq = 2-phenylquinoline (Ir-qb), bzq = benzo[h]quinoline (Ir-bb), and bqdc = potassium 2,2'-biquinoline-4,4'-dicarboxylate. These complexes exhibit high quantum yields and long emission lifetimes with high colour purity in the deep-red region. The structural characterisation carried out by usual spectroscopic measurements supports the proposed structures, while the photophysical study unveiled the high contribution of the 3MLCT state to the hybrid emitter state, as endorsed by theoretical investigations. The desired correspondence between the calculations and the experimental data set affirmed the accuracy of the theoretical analysis, which enabled us to establish a relationship between the ground-to-excited-state geometry distortion and the lifetime through the nonradiative decay (knr). Furthermore, these newly synthesized complexes exhibit quenching in the presence of molecular oxygen. In deoxygenated DMSO solution the knr values halve, increasing the quantum yields (34.0, 10.6, and 26.6%) and the lifetimes (1.13, 1.11, and 1.72 µs), while leading to quite pure deep-red emission - CIE coordinates: (0.67, 0.33), (0.60, 0.40;), (0.65, 0.35) for Ir-pb, Ir-qb, and Ir-bb, respectively. These complexes display considerable potential for a wide range of applications, such as photodynamic therapy, due to their attractive photophysical properties, and are among the deep-red-emitting complexes reported in the literature with longer lifetimes and higher Φ.

2.
Soft Matter ; 19(22): 3992-4000, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37096365

RESUMEN

Luminescent LnIII complexes incorporated in polymeric films exhibit narrow emission bands and absorption within the near-UV/blue spectral range, and enhanced phostability, which qualify them to be explored for solid-state lighting. Herein, (C26H56N)[Eu(dbm)4] and Na[Tb(acac)4], (C26H56N+ = didodecyldimethylammonium, dbm- =1,3-diphenyl-1,3-propanedionate, acac- = acetylacetonate), were dispersed in PMMA or PVDF films to protect them from degradation, and the obtained blends were applied as downshifting coatings on near-UV emitter LEDs. Upon such excitation, both EuIII and TbIII complexes emit red or green light with absolute emission quantum yields of 6.4 and 99%, respectively. The complex amount within films influences the photophysical parameters due to multiphotonic deactivation, and formation of agglomerates. For the PMMA-based LED prototypes, the LnIII emission is well-observed while for the PVDF ones, only a poor LnIII emission is detected due to their opacity. Therefore, the PMMA-based systems are better candidates to be used as luminescent coatings of near-UV LEDs for solid-state lighting.

3.
Photochem Photobiol Sci ; 21(6): 1077-1090, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35304728

RESUMEN

Two red-emitting heteroleptic iridium(III) complexes (Ir-p and Ir-q) were synthesized and their photophysical and biological properties were analyzed. After their structures have been confirmed by several techniques, such as 1H NMR, 13C NMR, FT-IR, UV-Vis, and MALDI TOF analyses, their luminescence behavior was investigated in ethanol and PBS (physiological medium, pH ~ 7.4) solutions. Emission spectra of both complexes are dominated by 3MLCT states at room temperature in ethanolic solution, but at 77 K the Ir-q exhibits the 3LC as the dominant emission state. The Ir-q complex shows one of the highest emission quantum yields, 11.5%, for a red emitter based on iridium(III) complexes in aerated PBS solution, with color coordinates (x;y) of (0.712;0.286). Moreover, both complexes display high potential to be used as a biological marker with excitation wavelengths above 400 nm, high water solubility (Ir-p 1838 µmol L-1, Ir-q 7601 µmol L-1), and distinct emission wavelengths from the biological autofluorescence. Their cytotoxicity was analyzed in CHO-k1 cells by MTT assays, and the IC50 was estimated as being higher than 131 µmol L-1 for Ir-p, and higher than 116 µmol L-1 for Ir-q. Concentrations above 70% of viability were used to perform cell imaging by confocal and fluorescence microscopies and the results suggest that the complexes were internalized by the cell membrane and they are staining the cytoplasm region.


Asunto(s)
Iridio , Compuestos Organometálicos , Iridio/química , Luminiscencia , Estructura Molecular , Compuestos Organometálicos/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Luminescence ; 34(8): 877-886, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31347269

RESUMEN

Eu3+ -ß-diketonate complexes are used, for example, in solid-state lighting (SSL) or light-converting molecular devices. However, their low emission quantum efficiency due to water molecules coordinated to Eu3+ and low photostability are still problems to be addressed. To overcome such challenges, we synthesized Eu3+ tetrakis complexes based on [Q][Eu(tfaa)4 ] and [Q][Eu(dbm)4 ] (Q1 = C26 H56 N+ , Q2 = C19 H42 N+ , and Q3 = C17 H38 N+ ), replacing the water molecules in the tris stoichiometry. The tetrakis ß-diketonates showed desirable thermal stability for SSL and, under excitation at 390 nm, they displayed the characteristic Eu3+ emission in the red spectral region. The quantum efficiencies of the dbm complexes achieved values as high as 51%, while the tfaa complexes exhibited lower quantum efficiencies (28-33%), but which were superior to those reported for the tris complexes. The structures were evaluated using the Sparkle/PM7 model and comparing the theoretical and the experimental Judd-Ofelt parameters. [Q1][Eu(dbm)4 ] was used to coat a near-UV light-emitting diode (LED), producing a red-emitting LED prototype that featured the characteristic emission spectrum of [Q1][Eu(dbm)4 ]. The emission intensity of this prototype decreased only 7% after 30 h, confirming its high photostability, which is a notable result considering Eu3+ complexes, making it a potential candidate for SSL.


Asunto(s)
Complejos de Coordinación/química , Europio/química , Cetonas/química , Luz , Complejos de Coordinación/síntesis química , Mediciones Luminiscentes , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...