Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Vasc Interv Radiol ; 35(1): 113-121.e3, 2024 01.
Article En | MEDLINE | ID: mdl-37696432

PURPOSE: To improve radiopacity of radiolucent absorbable poly-p-dioxanone (PPDO) inferior vena cava filters (IVCFs) and demostrate their effectiveness in clot-trapping ability. MATERIALS AND METHODS: Tungsten nanoparticles (WNPs) were incorporated along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of WNPs. The physicochemical and in vitro and in vivo imaging properties of PPDO IVCFs with WNPs with single-polymer PHB (W-P) were compared with those of WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). RESULTS: In vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physicomechanical properties of the PPDO sutures. W-P- and W-PB-coated IVCFs were deployed successfully into the inferior vena cava of pig models with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at Week 3 for both filters. CONCLUSIONS: The results highlight the utility of nanoparticles (NPs) and polymers for enhancing radiopacity of medical devices. Different methods of incorporating NPs and polymers can still be explored to improve the effectiveness, safety, and quality of absorbable IVCFs.


Nanoparticles , Vena Cava Filters , Swine , Animals , Tungsten , Polymers , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/surgery , Device Removal
2.
Adv Healthc Mater ; 12(26): e2300960, 2023 10.
Article En | MEDLINE | ID: mdl-37395729

Bioresorbable perivascular scaffolds loaded with antiproliferative agents have been shown to enhance arteriovenous fistula (AVF) maturation by inhibiting neointimal hyperplasia (NIH). These scaffolds, which can mimic the three-dimensional architecture of the vascular extracellular matrix, also have an untapped potential for the local delivery of cell therapies against NIH. Hence, an electrospun perivascular scaffold from polycaprolactone (PCL) to support mesenchymal stem cell (MSC) attachment and gradual elution at the AVF's outflow vein is fabricated. Chronic kidney disease (CKD) in Sprague-Dawley rats is induced by performing 5/6th nephrectomy, then AVFs for scaffold application are created. The following groups of CKD rats are compared: no perivascular scaffold (i.e., control), PCL alone, and PCL+MSC scaffold. PCL and PCL+MSC significantly improve ultrasonographic (i.e., luminal diameter, wall-to-lumen ratio, and flow rate) and histologic (i.e., neointima-to-lumen ratio, neointima-to-media ratio) parameters compared to control, with PCL+MSC demonstrating further improvement in these parameters compared to PCL alone. Moreover, only PCL+MSC significantly reduces 18 F-fluorodeoxyglucose uptake on positron emission tomography. These findings suggest that adding MSCs promotes greater luminal expansion and potentially reduces the inflammatory process underlying NIH. The results demonstrate the utility of mechanical support loaded with MSCs at the outflow vein immediately after AVF formation to support maturation by minimizing NIH.


Arteriovenous Fistula , Arteriovenous Shunt, Surgical , Mesenchymal Stem Cells , Renal Insufficiency, Chronic , Rats , Animals , Hyperplasia/pathology , Rats, Sprague-Dawley , Neointima/pathology , Absorbable Implants , Tomography, X-Ray Computed , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/pathology , Arteriovenous Fistula/pathology , Mesenchymal Stem Cells/pathology , Tissue Scaffolds
3.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37511512

Mesenchymal stem cell (MSC)-seeded polymeric perivascular wraps have been shown to enhance arteriovenous fistula (AVF) maturation. However, the wraps' radiolucency makes their placement and integrity difficult to monitor. Through electrospinning, we infused gold nanoparticles (AuNPs) into polycaprolactone (PCL) wraps to improve their radiopacity and tested whether infusion affects the previously reported beneficial effects of the wraps on the AVF's outflow vein. Sprague Dawley rat MSCs were seeded on the surface of the wraps. We then compared the effects of five AVF treatments-no perivascular wrap (i.e., control), PCL wrap, PCL + MSC wrap, PCL-Au wrap, and PCL-Au + MSC wrap-on AVF maturation in a Sprague Dawley rat model of chronic kidney disease (n = 3 per group). Via micro-CT, AuNP-infused wraps demonstrated a significantly higher radiopacity compared to that of the wraps without AuNPs. Wraps with and without AuNPs equally reduced vascular stenoses, as seen via ultrasonography and histomorphometry. In the immunofluorescence analysis, representative MSC-seeded wraps demonstrated reduced neointimal staining for markers of infiltration with smooth muscle cells (α-SMA), inflammatory cells (CD45), and fibroblasts (vimentin) compared to that of the control and wraps without MSCs. In conclusion, AuNP infusion allows in vivo monitoring via micro-CT of MSC-seeded polymeric wraps over time, without compromising the benefits of the wrap for AVF maturation.


Arteriovenous Fistula , Mesenchymal Stem Cells , Metal Nanoparticles , Rats , Animals , Gold , Rats, Sprague-Dawley , Absorbable Implants , Arteriovenous Fistula/therapy
4.
bioRxiv ; 2023 Feb 06.
Article En | MEDLINE | ID: mdl-36798362

The use of absorbable inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) eliminates risks and complications associated with the use of retrievable metallic filters. Radiopacity of radiolucent PPDO IVCFs can be improved with the incorporation of nanoparticles (NPs) made of high-atomic number materials such as gold and bismuth. In this study, we focused on incorporating tungsten NPs (WNPs), along with polyhydroxybutyrate (PHB), polycaprolactone (PCL), and polyvinylpyrrolidone (PVP) polymers to increase the surface adsorption of the WNPs. We compared the imaging properties of WNPs with single-polymer PHB (W-P) and WNPs with polymer blends consisting of PHB, PCL, and PVP (W-PB). Our in vitro analyses using PPDO sutures showed enhanced radiopacity with either W-P or W-PB coating, without compromising the inherent physico-mechanical properties of the PPDO sutures. We observed a more sustained release of WNPs from W-PB-coated sutures than W-P-coated sutures. We successfully deployed W-P- and W-PB-coated IVCFs into the inferior vena cava of pig models, with monitoring by fluoroscopy. At the time of deployment, W-PB-coated IVCFs showed a 2-fold increase in radiopacity compared to W-P-coated IVCFs. Longitudinal monitoring of in vivo IVCFs over a 12-week period showed a drastic decrease in radiopacity at week 3 for both filters. Results of this study highlight the utility of NPs and polymers for enhancing radiopacity of medical devices; however, different methods of incorporating NPs and polymers can still be explored to improve the efficacy, safety, and quality of absorbable IVCFs.

5.
ACS Biomater Sci Eng ; 8(4): 1676-1685, 2022 04 11.
Article En | MEDLINE | ID: mdl-35343679

Inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) are promising alternatives to metallic filters and their associated risks and complications. Incorporating high-Z nanoparticles (NPs) improves PPDO IVCFs' radiopacity without adversely affecting their safety or performance. However, increased radiopacity from these studies are insufficient for filter visualization during fluoroscopy-guided PPDO IVCF deployment. This study focuses on the use of bismuth nanoparticles (BiNPs) as radiopacifiers to render sufficient signal intensity for the fluoroscopy-guided deployment and long-term CT monitoring of PPDO IVCFs. The use of polyhydroxybutyate (PHB) as an additional layer to increase the surface adsorption of NPs resulted in a 2-fold increase in BiNP coating (BiNP-PPDO IVCFs, 3.8%; BiNP-PPDO + PHB IVCFs, 6.2%), enabling complete filter visualization during fluoroscopy-guided IVCF deployment and, 1 week later, clot deployment. The biocompatibility, clot-trapping efficacy, and mechanical strength of the control PPDO (load-at-break, 6.23 ± 0.13 kg), BiNP-PPDO (6.10 ± 0.09 kg), and BiNP-PPDO + PHB (6.15 ± 0.13 kg) IVCFs did not differ significantly over a 12-week monitoring period in pigs. These results indicate that BiNP-PPDO + PHB can increase the radiodensity of a novel absorbable IVCF without compromising device strength. Visualizing the device under conventional radiographic imaging is key to allow safe and effective clinical translation of the device.


Nanoparticles , Vena Cava Filters , Animals , Bismuth , Fluoroscopy , Nanoparticles/therapeutic use , Swine , Tomography, X-Ray Computed
6.
Chem Commun (Camb) ; 50(39): 5007-10, 2014 May 21.
Article En | MEDLINE | ID: mdl-24706156

A rhodium-BozPHOS based complex is reported. This complex is competent in catalyzing the [4+2+2] cycloisomerization of cyclooctatrienes in moderate to good yields. The X-ray crystal structure of this complex is reported, along with formation of both bicyclic and tricyclic cyclooctatrienes.

...