Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 290(44): 26597-609, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26354431

RESUMEN

Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Histonas/química , Radical Hidroxilo/química , Nucleosomas/metabolismo , Dímeros de Pirimidina/química , Proteínas Recombinantes de Fusión/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Ensamble y Desensamble de Cromatina/efectos de la radiación , Metilación de ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desaminación , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Radical Hidroxilo/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Nucleosomas/química , Nucleosomas/efectos de la radiación , Regiones Promotoras Genéticas , Dímeros de Pirimidina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rayos Ultravioleta
2.
Nucleic Acids Res ; 42(21): 13122-33, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25389265

RESUMEN

Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase η and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T=(m)CG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T=(m)CG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.


Asunto(s)
ADN/química , Mutación , Nucleosomas/química , Dímeros de Pirimidina/química , Desaminación , Tasa de Mutación
3.
J Bacteriol ; 193(13): 3220-7, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21515776

RESUMEN

The chemoreceptor-CheA kinase-CheW coupling protein complex, with ancillary associated proteins, is at the heart of chemotactic signal transduction in bacteria. The goal of this work was to determine the cellular stoichiometry of the chemotaxis signaling proteins in Bacillus subtilis. Quantitative immunoblotting was used to determine the total number of chemotaxis proteins in a single cell of B. subtilis. Significantly higher levels of chemoreceptors and much lower levels of CheA kinase were measured in B. subtilis than in Escherichia coli. The resulting cellular ratio of chemoreceptor dimers per CheA dimer in B. subtilis is roughly 23.0 ± 4.5 compared to 3.4 ± 0.8 receptor dimers per CheA dimer observed in E. coli, but the ratios of the coupling protein CheW to the CheA dimer are nearly identical in the two organisms. The ratios of CheB to CheR in B. subtilis are also very similar, although the overall levels of modification enzymes are higher. When the potential binding partners of CheD are deleted, the levels of CheD drop significantly. This finding suggests that B. subtilis selectively degrades excess chemotaxis proteins to maintain optimum ratios. Finally, the two cytoplasmic receptors were observed to localize among the other receptors at the cell poles and appear to participate in the chemoreceptor complex. These results suggest that there are many novel features of B. subtilis chemotaxis compared with the mechanism in E. coli, but they are built on a common core.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Quimiotaxis , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/fisiología , Immunoblotting/métodos
4.
J Biol Chem ; 286(8): 6329-35, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21160086

RESUMEN

C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. These mutations are proposed to arise from the insertion of A by DNA polymerase η opposite the T that results from deamination of the methylC ((m)C) within the CPD. Although the frequency of CPD formation and repair is modestly modulated by its rotational position within a nucleosome, the effect of position on the rate of (m)C deamination in a CPD has not been previously studied. We now report that deamination of a T(m)C CPD whose sugar phosphate backbone is positioned against the histone core surface decreases by a factor of 4.7, whereas that of a T(m)C CPD positioned away from the surface increases by a factor of 8.9 when compared with unbound DNA. Because the (m)Cs undergoing deamination are in similar steric environments, the difference in rate appears to be a consequence of a difference in the flexibility and compression of the two sites due to DNA bending. Considering that formation of the CPD positioned away from the surface is also enhanced by a factor of two, a T(m)CG site in this position might be expected to have up to an 84-fold higher probability of resulting in a UV-induced (m)C to T mutation than one positioned against the surface. These results indicate that rotational position may play an important role in the formation of UV-induced C to T mutation hotspots, as well as in the mutagenic mechanism of other DNA lesions.


Asunto(s)
5-Metilcitosina/química , ADN/química , Modelos Moleculares , Nucleosomas/química , Dímeros de Pirimidina/química , 5-Metilcitosina/metabolismo , Animales , ADN/metabolismo , Desaminación/efectos de la radiación , Mutagénesis/efectos de la radiación , Nucleosomas/metabolismo , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta , Xenopus laevis
5.
Nucleic Acids Res ; 38(20): 6943-55, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20601406

RESUMEN

Spontaneous deamination of cytosine to uracil in DNA is a ubiquitous source of C→T mutations, but occurs with a half life of ∼50 000 years. In contrast, cytosine within sunlight induced cyclobutane dipyrimidine dimers (CPD's), deaminate within hours to days. Methylation of C increases the frequency of CPD formation at PyCG sites which correlate with C→T mutation hotspots in skin cancers. MeCP2 binds to mCG sites and acts as a transcriptional regulator and chromatin modifier affecting thousands of genes, but its effect on CPD formation and deamination is unknown. We report that the methyl CpG binding domain of MeCP2 (MBD) greatly enhances C=mC CPD formation at a TCmCG site in duplex DNA and binds with equal or better affinity to the CPD-containing duplex compared with the undamaged duplex. In comparison, MBD does not enhance T=mC CPD formation at a TTmCG site, but instead increases CPD formation at the adjacent TT site. MBD was also found to completely suppress deamination of the T=mCG CPD, suggesting that MeCP2 may have the capability to both suppress UV mutagenesis at PymCpG sites as well as enhance it.


Asunto(s)
Islas de CpG , Proteína 2 de Unión a Metil-CpG/metabolismo , Dímeros de Pirimidina/química , Islas de CpG/efectos de la radiación , Huella de ADN , Metilación de ADN , Desaminación , Dimerización , Proteína 2 de Unión a Metil-CpG/química , Unión Proteica , Tirosina/química , Rayos Ultravioleta
6.
J Mol Biol ; 392(5): 1145-57, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19631218

RESUMEN

Sunlight-induced C-->T mutation hotspots occur most frequently at methylated CpG sites in tumor suppressor genes and are thought to arise from translesion synthesis past deaminated cyclobutane pyrimidine dimers (CPDs). While it is known that methylation enhances CPD formation in sunlight, little is known about the effect of methylation and sequence context on the deamination of 5-methylcytosine ((m)C) and its contribution to mutagenesis at these hotspots. Using an enzymatic method, we have determined the yields and deamination rates of C and (m)C in CPDs and find that the frequency of UVB-induced CPDs correlates with the oxidation potential of the flanking bases. We also found that the deamination of T(m)C and (m)CT CPDs is about 25-fold faster when flanked by G's than by A's, C's or T's in duplex DNA and appears to involve catalysis by the O6 group of guanine. In contrast, the first deamination of either C or (m)C in AC(m)CG with a flanking G was much slower (t(1/2) >250 h) and rate limiting, while the second deamination was much faster. The observation that C(m)CG dimers deaminate very slowly but at the same time correlate with C-->T mutation hotspots suggests that their repair must be slow enough to allow sufficient time for deamination. There are, however, a greater number of single C-->T mutations than CC-->TT mutations at C(m)CG sites even though the second deamination is very fast, which could reflect faster repair of doubly deaminated dimers.


Asunto(s)
5-Metilcitosina/metabolismo , ADN/genética , ADN/metabolismo , Guanina/metabolismo , Mutación Puntual , Dímeros de Pirimidina/metabolismo , Timina/metabolismo , Animales , Desaminación , Modelos Biológicos , Modelos Moleculares , Salmón , Rayos Ultravioleta
7.
J Biol Chem ; 282(15): 11188-96, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17303570

RESUMEN

DNA misalignment occurs in homopolymer tracts during replication and can lead to frameshift mutations. Polymerase (pol) recognition of primer-templates containing bulge structures and the transmission of a bulge through a polymerase binding site or replication complex are important components of frameshift mutagenesis. In this report, we describe the interaction of the catalytic core of pol eta with primer-templates containing bulge structures by single round primer extension. We found that pol eta could stabilize a frayed primer terminus, which enhances its ability to extend primer-templates containing bulges. Based on methylphosphonate-DNA mapping, pol eta interacts with the single strand template but not appreciably with the template strand of the DNA stem greater than two nucleotides from the primer terminus. These latter characteristics, combined with the ability to stabilize a frayed primer terminus, may explain why primer-templates containing template bulges are extended so efficiently by pol eta. Although pol eta could accommodate large bulges and continue synthesis without obstruction, bulge structures in the template, but not in the primer, caused termination of the T7 DNA replication complex. Terminations occurred when the template bulge neared the helix-loop-helix domain of the polymerase thumb. Terminations were not observed, however, when bulge structures approached the site of interaction of the DNA with the extended thumb and thioredoxin. At low temperature, however, terminations did occur at this site.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Cartilla de ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Dimerización , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleótidos/genética , Organofosfatos/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Moldes Genéticos , Tiorredoxinas/biosíntesis , Timidina/química , Timidina/metabolismo
8.
Biochemistry ; 45(30): 9327-35, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16866379

RESUMEN

Cyclobutane pyrimidine dimers (CPDs) are responsible for a considerable fraction of sunlight-induced C to T and 5-methycytosine (mC) to T mutations in mammalian cells, though the precise mechanism is unknown. One possibility is that the C or mC of a CPD is not mutagenic and must first deaminate to U or T, respectively, for A to be inserted by a DNA polymerase. Alternatively, A might be directly inserted opposite the C or mC prior to deamination via an E-imino tautomer of the C or mC or by a nontemplated mechanism in which the photoproduct is sterically excluded from the active site. We have taken advantage of the retarding effect of C5 methylation on the deamination rate of cis-syn-cyclobutane dimers to prepare a template containing the cis-syn-cyclobutane dimer of mCT. Through the use of single-hit and multiple-hit competition assays, the catalytic core of pol eta was found to insert dGMP opposite the mC of the CPD with about a 120:1 selectivity relative to dAMP. No significant insertion of dTTP or dCMP was detected. The high fidelity of nonmutagenic insertion opposite the mC of the CPD provides strong support for the deamination-bypass mechanism for the origin of sunlight induced C --> T mutations.


Asunto(s)
ADN de Hongos/biosíntesis , ADN Polimerasa Dirigida por ADN/química , Proteínas Fúngicas/química , Dímeros de Pirimidina/metabolismo , Replicación del ADN/genética , Elementos Transponibles de ADN/genética , ADN de Hongos/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Fúngicas/metabolismo , Mutación , Dímeros de Pirimidina/genética , Temperatura , Moldes Genéticos
9.
J Biol Chem ; 279(18): 18288-95, 2004 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-14871898

RESUMEN

The replicative polymerase of bacteriophage T7 is structurally and mechanistically well characterized. The crystal structure of T7 DNA polymerase or gene 5 protein complexed to its processivity factor, Escherichia coli thioredoxin, a primer-template, and a dideoxynucleotide reveals how this enzyme interacts with the 3'-end of the primer-template, but does not show how thioredoxin confers processivity to the polymerase. In the crystal structure highly conserved amino acids Asn(335) and Ser(338) of the thumb subdomain of T7 DNA polymerase are seen to interact with phosphates 7 and 8 of the DNA template strand. Results with a mutant T7 DNA polymerase in which aliphatic residues are substituted for these amino acids and experiments with different length and methylphosphonate-modified primer-templates demonstrate that these interactions are essential for processive synthesis and d(A.T)(n) tract bypass. Our data with methylphosphonate-modified DNA suggests that thioredoxin confers processivity to T7 DNA polymerase in part by causing an interaction with the phosphate backbone or minor groove of DNA. Residues Asn(335) and Ser(338) may also function with a nearby helix-loop-helix motif located at residues 339-372 to enclose the DNA during processive synthesis. Our results suggest that this structure must be held close to the DNA by ionic interactions to function. These interactions also allow for DNA sliding but physically block the passage of a 3T bulge in the template. In contrast, yeast polymerase eta, a polymerase that non-mutagenically repairs cis-syn thymidine dimers, allows the same bulge to slide past its thumb subdomain during synthesis. A relaxed thumb interaction with the DNA could account for the notably low processivity of polymerase eta.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Sustitución de Aminoácidos , Sitios de Unión , Cartilla de ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Fúngicas , Oligodesoxirribonucleótidos/química , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática , Proteínas Virales
10.
J Biol Chem ; 278(49): 48611-6, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-12920116

RESUMEN

In this report we show that in Bacillus subtilis the flagellar switch, which controls direction of flagellar rotation based on levels of the chemotaxis primary response regulator, CheY-P, also causes hydrolysis of CheY-P to form CheY and Pi. This task is performed in Escherichia coli by CheZ, which interestingly enough is primarily located at the receptors, not at the switch. In particular we have identified the phosphatase as FliY, which resembles E. coli switch protein FliN only in its C-terminal part, while an additional N-terminal domain is homologous to another switch protein FliM and to CheC, a protein found in the archaea and many bacteria but not in E. coli. Previous E. coli studies have localized the CheY-P binding site of the switch to FliM residues 6-15. These residues are almost identical to the residues 6-15 in both B. subtilis FliM and FliY. We were able to show that both of these proteins are capable of binding CheY-P in vitro. Deletion of this binding region in B. subtilis mutant fliM caused the same phenotype as a cheY mutant (clockwise flagellar rotation), whereas deletion of it in fliY caused the opposite. We showed that FliY increases the rate of CheY-P hydrolysis in vitro. Consequently, we imagine that the duration of enhanced CheY-P levels caused by activation of the CheA kinase upon attractant binding to receptors, is brief due both to adaptational processes and to phosphatase activity of FliY.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/fisiología , Sitios de Unión , Quimiotaxis , Proteínas de Escherichia coli , Histidina Quinasa , Hidrólisis , Proteínas de la Membrana/química , Proteínas Quimiotácticas Aceptoras de Metilo , Datos de Secuencia Molecular , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA