Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(2): 1262-1313, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38180485

RESUMEN

The identification of VHL-binding proteolysis targeting chimeras (PROTACs) that potently degrade the BRM protein (also known as SMARCA2) in SW1573 cell-based experiments is described. These molecules exhibit between 10- and 100-fold degradation selectivity for BRM over the closely related paralog protein BRG1 (SMARCA4). They also selectively impair the proliferation of the H1944 "BRG1-mutant" NSCLC cell line, which lacks functional BRG1 protein and is thus highly dependent on BRM for growth, relative to the wild-type Calu6 line. In vivo experiments performed with a subset of compounds identified PROTACs that potently and selectively degraded BRM in the Calu6 and/or the HCC2302 BRG1 mutant NSCLC xenograft models and also afforded antitumor efficacy in the latter system. Subsequent PK/PD analysis established a need to achieve strong BRM degradation (>95%) in order to trigger meaningful antitumor activity in vivo. Intratumor quantitation of mRNA associated with two genes whose transcription was controlled by BRM (PLAU and KRT80) also supported this conclusion.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Quimera Dirigida a la Proteólisis , Xenoinjertos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Neoplasias Pulmonares/genética , Factores de Transcripción/genética , ADN Helicasas/genética , Proteínas Nucleares/genética
2.
Pharmaceutics ; 15(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37631312

RESUMEN

Proteolysis-Targeting Chimeras (PROTACs) are a promising new technology in drug development. They have rapidly evolved in recent years, with several of them in clinical trials. While most of these advances have been associated with monovalent protein degraders, bivalent PROTACs have also entered clinical trials, although progression to market has been limited. One of the reasons is the complex physicochemical properties of the heterobifunctional PROTACs. A promising strategy to improve pharmacokinetics of highly lipophilic compounds, such as PROTACs, is encapsulation in liposome systems. Here we describe liposome systems for intravenous administration to enhance the PK properties of two bivalent PROTAC molecules, by reducing clearance and increasing systemic coverage. We developed and characterized a PROTAC-in-cyclodextrin liposome system where the drug was retained in the liposome core. In PK studies at 1 mg/kg for GNE-01 the PROTAC-in-cyclodextrin liposome, compared to the solution formulation, showed a 80- and a 380-fold enhancement in AUC for mouse and rat studies, respectively. We further investigated the same PROTAC-in-cyclodextrin liposome system with the second PROTAC (GNE-02), where we monitored both lipid and drug concentrations in vivo. Similarly, in a mouse PK study of GEN-02, the PROTAC-in-cyclodextrin liposome system exhibited enhancement in plasma concentration of a 23× increase over the conventional solution formulation. Importantly, the lipid CL correlated with the drug CL. Additionally, we investigated a conventional liposome approach for GNE-02, where the PROTAC resides in the lipid bilayer. Here, a 5× increase in AUC was observed, compared to the conventional solution formulation, and the drug CL was faster than the lipid CL. These results indicate that the different liposome systems can be tailored to translate across multiple PROTAC systems to modulate and improve plasma concentrations. Optimization of the liposomes could further improve tumor concentration and improve the overall therapeutic index (TI). This delivery technology may be well suited to bring novel protein targeted PROTACs into clinics.

3.
Nat Commun ; 13(1): 6814, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357397

RESUMEN

The mammalian SWItch/Sucrose Non-Fermentable (SWI/SNF) helicase SMARCA4 is frequently mutated in cancer and inactivation results in a cellular dependence on its paralog, SMARCA2, thus making SMARCA2 an attractive synthetic lethal target. However, published data indicates that achieving a high degree of selective SMARCA2 inhibition is likely essential to afford an acceptable therapeutic index, and realizing this objective is challenging due to the homology with the SMARCA4 paralog. Herein we report the discovery of a potent and selective SMARCA2 proteolysis-targeting chimera molecule (PROTAC), A947. Selective SMARCA2 degradation is achieved in the absence of selective SMARCA2/4 PROTAC binding and translates to potent in vitro growth inhibition and in vivo efficacy in SMARCA4 mutant models, compared to wild type models. Global ubiquitin mapping and proteome profiling reveal no unexpected off-target degradation related to A947 treatment. Our study thus highlights the ability to transform a non-selective SMARCA2/4-binding ligand into a selective and efficacious in vivo SMARCA2-targeting PROTAC, and thereby provides a potential new therapeutic opportunity for patients whose tumors contain SMARCA4 mutations.


Asunto(s)
Neoplasias , Animales , Humanos , Proteolisis , Neoplasias/genética , Mutación , Mamíferos , Factores de Transcripción/genética , ADN Helicasas/genética , Proteínas Nucleares/genética
4.
Proteomics Clin Appl ; 12(5): e1700157, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29573172

RESUMEN

PURPOSE: Autosomal dominant polycystic kidney disease (ADPKD) is a life-long disease in which the genes responsible are known, but the pathogenesis of cyst formation and cyst growth are not understood. Cyst growth ultimately leads to end-stage renal failure in most patients. Analysis of the urinary proteome offers the potential to identify proteins that indicate the presence of cysts (and thus provides diagnosis) as well as the rates of cyst growth (providing prognostic information). EXPERIMENTAL DESIGN: A scheduled parallel reaction monitoring (sPRM) assay is performed on urine samples from 14 patients and 18 normal controls. For relative quantification, stable isotope-labeled synthetic peptides are spiked in the urinary protein digests prior to data collection. The data are subsequently normalized to creatinine and protein concentration in the respective urine samples to control for variations in water intake between individuals. RESULTS: Out of the 143 urinary proteins targeted for sPRM assay, 69 proteins are observed to be significantly dysregulated in ADPKD. The dysregulated proteins are used to cluster ADPKD patients into those who are more or less similar to normal controls. CONCLUSIONS AND CLINICAL RELEVANCE: This study shows that sPRM is a promising approach to rapidly screen large numbers of proteins in urine in order to provide earlier diagnosis and potentially better understand the pathogenesis of ADPKD development and progression.


Asunto(s)
Biomarcadores/orina , Riñón Poliquístico Autosómico Dominante/orina , Proteínas/genética , Orina/química , Femenino , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Proteínas/química , Proteoma/genética
5.
Proteomics Clin Appl ; 10(1): 58-74, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26220717

RESUMEN

PURPOSE: Since human urine is the most readily available biofluid whose proteome changes in response to disease, it is a logical sample for identifying protein biomarkers for kidney diseases. EXPERIMENTAL DESIGN: Potential biomarkers were identified by using a multiproteomics workflow to compare urine proteomes of kidney transplant patients with immediate and delayed graft function. Differentially expressed proteins were identified, and corresponding stable isotope labeled internal peptide standards were synthesized for scheduled MRM. RESULTS: The Targeted Urine Proteome Assay (TUPA) was then developed by identifying those peptides for which there were at least two transitions for which interference in a urine matrix across 156 MRM runs was <30%. This resulted in an assay that monitors 224 peptides from 167 quantifiable proteins. CONCLUSIONS AND CLINICAL RELEVANCE: TUPA opens the way for using a robust mass spectrometric technology, MRM, for quantifying and validating biomarkers from among 167 urinary proteins. This approach, while developed using differentially expressed urinary proteins from patients with delayed versus immediate graft function after kidney transplant, can be expanded to include differentially expressed urinary proteins in multiple kidney diseases. Thus, TUPA could provide a single assay to help diagnose, prognose, and manage many kidney diseases.


Asunto(s)
Trasplante de Riñón , Enfermedades Renales Poliquísticas/orina , Proteinuria/orina , Proteoma/metabolismo , Proteómica/métodos , Insuficiencia Renal Crónica/orina , Biomarcadores , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos
6.
Am J Physiol Endocrinol Metab ; 307(9): E773-83, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25159329

RESUMEN

The steroid receptor coactivator 1 (SRC1) regulates key metabolic pathways, including glucose homeostasis. SRC1(-/-) mice have decreased hepatic expression of gluconeogenic enzymes and a reduction in the rate of endogenous glucose production (EGP). We sought to determine whether decreasing hepatic and adipose SRC1 expression in normal adult rats would alter glucose homeostasis and insulin action. Regular chow-fed and high-fat-fed male Sprage-Dawley rats were treated with an antisense oligonucleotide (ASO) against SRC1 or a control ASO for 4 wk, followed by metabolic assessments. SRC1 ASO did not alter basal EGP or expression of gluconeogenic enzymes. Instead, SRC1 ASO increased insulin-stimulated whole body glucose disposal by ~30%, which was attributable largely to an increase in insulin-stimulated muscle glucose uptake. This was associated with an approximately sevenfold increase in adipose expression of lipocalin-type prostaglandin D2 synthase, a previously reported regulator of insulin sensitivity, and an approximately 70% increase in plasma PGD2 concentration. Muscle insulin signaling, AMPK activation, and tissue perfusion were unchanged. Although GLUT4 content was unchanged, SRC1 ASO increased the cleavage of tether-containing UBX domain for GLUT4, a regulator of GLUT4 translocation. These studies point to a novel role of adipose SRC1 as a regulator of insulin-stimulated muscle glucose uptake.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Intolerancia a la Glucosa/tratamiento farmacológico , Resistencia a la Insulina , Músculo Esquelético/efectos de los fármacos , Coactivador 1 de Receptor Nuclear/antagonistas & inhibidores , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/agonistas , Transportador de Glucosa de Tipo 4/química , Transportador de Glucosa de Tipo 4/metabolismo , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/agonistas , Lipocalinas/genética , Lipocalinas/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Prostaglandina D2/sangre , Prostaglandina D2/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos , Ratas Sprague-Dawley
7.
Diabetes ; 62(7): 2183-94, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23423574

RESUMEN

We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat-fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes.


Asunto(s)
Adiposidad/fisiología , Gluconeogénesis/fisiología , Resistencia a la Insulina/fisiología , Hígado/enzimología , Piruvato Carboxilasa/metabolismo , Tejido Adiposo/enzimología , Adulto , Animales , Hígado Graso/enzimología , Femenino , Glicerol/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Ratas Zucker
8.
Proc Natl Acad Sci U S A ; 110(5): 1869-74, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23302688

RESUMEN

Comparative gene identification 58 (CGI-58) is a lipid droplet-associated protein that promotes the hydrolysis of triglyceride by activating adipose triglyceride lipase. Loss-of-function mutations in CGI-58 in humans lead to Chanarin-Dorfman syndrome, a condition in which triglyceride accumulates in various tissues, including the skin, liver, muscle, and intestines. Therefore, without adequate CGI-58 expression, lipids are stored rather than used for fuel, signaling intermediates, and membrane biosynthesis. CGI-58 knockdown in mice using antisense oligonucleotide (ASO) treatment also leads to severe hepatic steatosis as well as increased hepatocellular diacylglycerol (DAG) content, a well-documented trigger of insulin resistance. Surprisingly, CGI-58 knockdown mice remain insulin-sensitive, seemingly dissociating DAG from the development of insulin resistance. Therefore, we sought to determine the mechanism responsible for this paradox. Hyperinsulinemic-euglycemic clamp studies reveal that the maintenance of insulin sensitivity with CGI-58 ASO treatment could entirely be attributed to protection from lipid-induced hepatic insulin resistance, despite the apparent lipotoxic conditions. Analysis of the cellular compartmentation of DAG revealed that DAG increased in the membrane fraction of high fat-fed mice, leading to PKCε activation and hepatic insulin resistance. However, DAG increased in lipid droplets or lipid-associated endoplasmic reticulum rather than the membrane of CGI-58 ASO-treated mice, and thus prevented PKCε translocation to the plasma membrane and induction of insulin resistance. Taken together, these results explain the disassociation of hepatic steatosis and DAG accumulation from hepatic insulin resistance in CGI-58 ASO-treated mice, and highlight the importance of intracellular compartmentation of DAG in causing lipotoxicity and hepatic insulin resistance.


Asunto(s)
1-Acilglicerol-3-Fosfato O-Aciltransferasa/metabolismo , Diglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Resistencia a la Insulina , Lípidos/química , Hígado/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Dieta Alta en Grasa , Retículo Endoplásmico/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Inyecciones Intraperitoneales , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Proteína Quinasa C-epsilon/metabolismo , Transporte de Proteínas/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Hepatology ; 57(5): 1763-72, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23175050

RESUMEN

UNLABELLED: Genome-wide array studies have associated the patatin-like phospholipase domain-containing 3 (PNPLA3) gene polymorphisms with hepatic steatosis. However, it is unclear whether PNPLA3 functions as a lipase or a lipogenic enzyme and whether PNPLA3 is involved in the pathogenesis of hepatic insulin resistance. To address these questions we treated high-fat-fed rats with specific antisense oligonucleotides to decrease hepatic and adipose pnpla3 expression. Reducing pnpla3 expression prevented hepatic steatosis, which could be attributed to decreased fatty acid esterification measured by the incorporation of [U-(13) C]-palmitate into hepatic triglyceride. While the precursors for phosphatidic acid (PA) (long-chain fatty acyl-CoAs and lysophosphatidic acid [LPA]) were not decreased, we did observe an ∼20% reduction in the hepatic PA content, ∼35% reduction in the PA/LPA ratio, and ∼60%-70% reduction in transacylation activity at the level of acyl-CoA:1-acylglycerol-sn-3-phosphate acyltransferase. These changes were associated with an ∼50% reduction in hepatic diacylglycerol (DAG) content, an ∼80% reduction in hepatic protein kinase Cε activation, and increased hepatic insulin sensitivity, as reflected by a 2-fold greater suppression of endogenous glucose production during the hyperinsulinemic-euglycemic clamp. Finally, in humans, hepatic PNPLA3 messenger RNA (mRNA) expression was strongly correlated with hepatic triglyceride and DAG content, supporting a potential lipogenic role of PNPLA3 in humans. CONCLUSION: PNPLA3 may function primarily in a lipogenic capacity and inhibition of PNPLA3 may be a novel therapeutic approach for treatment of nonalcoholic fatty liver disease-associated hepatic insulin resistance.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado Graso/inducido químicamente , Hígado Graso/fisiopatología , Resistencia a la Insulina/fisiología , Lípidos/efectos adversos , Proteínas de la Membrana/fisiología , Fosfolipasas A2/fisiología , Animales , Biopsia , Diglicéridos/metabolismo , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Oligonucleótidos Antisentido/farmacología , Fosfolipasas A2/efectos de los fármacos , Fosfolipasas A2/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA