Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34524958

RESUMEN

Surface acoustic wave (SAW) devices are increasingly applied in life sciences, biology, and point-of-care applications due to their combined acoustofluidic sensing and actuating properties. Despite the advances in this field, there remain significant gaps in interfacing hardware and control strategies to facilitate system integration with high performance and low cost. In this work, we present a versatile and digitally controlled acoustofluidic platform by demonstrating key functions for biological assays such as droplet transportation and mixing using a closed-loop feedback control with image recognition. Moreover, we integrate optical detection by demonstrating in situ fluorescence sensing capabilities with a standard camera and digital filters, bypassing the need for expensive and complex optical setups. The Acousto-Pi setup is based on open-source Raspberry Pi hardware and 3-D printed housing, and the SAW devices are fabricated with piezoelectric thin films on a metallic substrate. The platform enables the control of droplet position and speed for sample processing (mixing and dilution of samples), as well as the control of temperature based on acousto-heating, offering embedded processing capability. It can be operated remotely while recording the measurements in cloud databases toward integrated in-field diagnostic applications such as disease outbreak control, mass healthcare screening, and food safety.


Asunto(s)
Electrónica , Sonido , Retroalimentación , Sistemas de Atención de Punto
2.
ACS Appl Mater Interfaces ; 13(14): 16978-16986, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33813830

RESUMEN

In this paper, we explore the acoustofluidic performance of zinc oxide (ZnO) thin-film surface acoustic wave (SAW) devices fabricated on flexible and bendable thin aluminum (Al) foils/sheets with thicknesses from 50 to 1500 µm. Directional transport of fluids along these flexible/bendable surfaces offers potential applications for the next generation of microfluidic systems, wearable biosensors and soft robotic control. Theoretical calculations indicate that bending under strain levels up to 3000 µÎµ causes a small frequency shift and amplitude change (<0.3%) without degrading the acoustofluidic performance. Through systematic investigation of the effects of the Al sheet thickness on the microfluidic actuation performance for the bent devices, we identify the optimum thickness range to both maintain efficient microfluidic actuation and enable significant deformation of the substrate, providing a guide to design such devices. Finally, we demonstrate efficient liquid transportation across a wide range of substrate geometries including inclined, curved, vertical, inverted, and lateral positioned surfaces using a 200 µm thick Al sheet SAW device.

3.
Nano Lett ; 20(5): 3263-3270, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32233442

RESUMEN

The ability to actuate liquids remains a fundamental challenge in smart microsystems, such as those for soft robotics, where devices often need to conform to either natural or three-dimensional solid shapes, in various orientations. Here, we propose a hierarchical nanotexturing of piezoelectric films as active microfluidic actuators, exploiting a unique combination of both topographical and chemical properties on flexible surfaces, while also introducing design concepts of shear hydrophobicity and tensile hydrophilicity. In doing so, we create nanostructured surfaces that are, at the same time, both slippery (low in-plane pinning) and sticky (high normal-to-plane liquid adhesion). By enabling fluid transportation on such arbitrarily shaped surfaces, we demonstrate efficient fluid motions on inclined, vertical, inverted, or even flexible geometries in three dimensions. Such surfaces can also be deformed and then reformed into their original shapes, thereby paving the way for advanced microfluidic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA