Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(9): 14505-14517, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473191

RESUMEN

An improved binary amplitude modulation-based phase retrieval method studied by means of simulations and experiments is presented in this paper. The idea of ptychography is introduced for the purpose of designing random binary amplitude masks. The masks have the features that part of the light transmission regions is overlapped with each other and the overlapping positions are randomly distributed. The requirement for the consistency of light field in overlapping regions forms a strong constraint which is similar to the overlap constraint in ptychography. The constraint makes the iterative algorithm have high convergence accuracy in comparison to that of the original binary amplitude modulation method. Influences of amounts and overlap ratio of the modulation mask on reconstruction accuracy and speed of imaging process are analyzed. The comparison between our method and the original binary amplitude modulation method is performed in order to verify the feasibility of the proposed method.

2.
Micromachines (Basel) ; 12(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34577740

RESUMEN

Microlenses can be widely used in integrated micro-optical systems. However, in some special applications, such as light field imaging systems, multifocal microlens arrays (MLA) are expected to improve imaging resolution. For the fabrication of multifocal MLA, the traditional fabrication method is no longer applicable. To solve this problem, a fabrication method of multifocal MLA by a one step exposure process is proposed. Through the analyses and research of photoresist AZ9260, the nonlinear relationship between exposure dose and exposure depth is established. In the design of the mask, the mask pattern is corrected according to the nonlinear relationship to obtain the final mask. The continuous surface of the multifocal MLA is fabricated by the mask moving exposure. The experimental results show that the prepared multifocal MLA has high filling factor and surface fidelity. What is more, this method is simple and efficient to use in practical applications.

3.
Micromachines (Basel) ; 12(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207625

RESUMEN

Double microlens arrays (MLAs) in series can be used to divide and superpose laser beam so as to achieve a homogenized spot. However, for laser beam homogenization with high coherence, the periodic lattice distribution in the homogenized spot will be generated due to the periodicity of the traditional MLA, which greatly reduces the uniformity of the homogenized spot. To solve this problem, a monolithic and highly integrated double-sided random microlens array (D-rMLA) is proposed for the purpose of achieving laser beam homogenization. The periodicity of the MLA is disturbed by the closely arranged microlens structures with random apertures. And the random speckle field is achieved to improve the uniformity of the homogenized spot by the superposition of the divided sub-beams. In addition, the double-sided exposure technique is proposed to prepare the rMLA on both sides of the same substrate with high precision alignment to form an integrated D-rMLA structure, which avoids the strict alignment problem in the installation process of traditional discrete MLAs. Then the laser beam homogenization experiments have been carried out by using the prepared D-rMLA structure. The laser beam homogenized spots of different wavelengths have been tested, including the wavelengths of 650 nm (R), 532 nm (G), and 405 nm (B). The experimental results show that the uniformity of the RGB homogenized spots is about 91%, 89%, and 90%. And the energy utilization rate is about 89%, 87%, 86%, respectively. Hence, the prepared structure has high laser beam homogenization ability and energy utilization rate, which is suitable for wide wavelength regime.

4.
Opt Express ; 28(7): 10090-10103, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225602

RESUMEN

The use of the diffractive optical element (DOE) can often significantly reduce the size and enhance the performance of the optical system, but it is mostly prevented by low diffraction efficiency and serious speckle noise due to the quantization error. In this paper, an error tracking-control-reduction (ETCR) algorithm is proposed to suppress the quantization error, which adjusts the accumulative action, controls the current state and predicts the trend of the error. The simulation and experiment results verify that the ETCR algorithm has high diffraction efficiency which can be comparable with the Gerchberg-Saxton (GS) and Modified GS algorithms. Furthermore, the root-mean-square error (RMSE) of the proposed algorithm is significantly lower than that of the GS and MGS algorithms. Based on the proposed method, a 2-level DOE has been designed and fabricated to generate several grey images with only 0.05 RMSE.

5.
Micromachines (Basel) ; 11(3)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32214035

RESUMEN

The miniaturized and integrated microlens array (MLA) can effectively achieve the beam homogenization, compactness and miniaturization of laser systems. When the high-coherence laser beam is homogenized by means of using the MLA, interference fringes will occur in the homogenized light spot due to the periodicity of the MLA, which seriously affects the uniformity of the homogenized light spot. To solve this problem, a novel random microlens array (rMLA) structure was proposed for the purpose of achieving beam homogenization. The coherence in the homogenization process is suppressed by means of breaking the periodicity of the MLA. The homogenized light spot with a high energy utilization is then obtained accordingly. In the fabrication process, a clever method of combining chemical etching with lithography technology is performed to fabricate a honeycomb rMLA and a rectangular rMLA. The experimental results show that the energy utilization rate of the two types of the rMLAs is about 90%, and the uniformity of the homogenized light spots generated by the honeycomb rMLA and the rectangular rMLA are more than 80% and 85%, respectively. Meanwhile, fully cost-effective fabrication is possible to be realized.

6.
Appl Opt ; 58(31): 8713-8718, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873352

RESUMEN

Divergent light illumination can effectively increase the diffraction angle of holographic projection. However, the achieved maximum image size is limited to the geometric enlargement of the hologram size with the existing double-sampling Fresnel diffraction algorithm. In this paper, an effective method for further magnifying the image is proposed. The theoretical maximum size under divergent illumination is first analyzed. On this basis, a virtual intermediate plane is introduced between the source plane and the image plane. Then three-step diffraction calculation is performed to evaluate the Fresnel diffraction between the hologram plane and the image plane so that the sampling interval on the image plane is related to the position of the virtual plane and can be flexibly tuned. Consequently, the achieved image size can be further enlarged. The feasibility of the proposed method is demonstrated by simulations and experiments.

7.
Micromachines (Basel) ; 10(12)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835314

RESUMEN

The naked-eye three-dimensional (3D) display technology without wearing equipment is an inevitable future development trend. In this paper, the design and fabrication of a flexible naked-eye 3D display film element based on a microstructure have been proposed to achieve a high-resolution 3D display effect. The film element consists of two sets of key microstructures, namely, a microimage array (MIA) and microlens array (MLA). By establishing the basic structural model, the matching relationship between the two groups of microstructures has been studied. Based on 3D graphics software, a 3D object information acquisition model has been proposed to achieve a high-resolution MIA from different viewpoints, recording without crosstalk. In addition, lithography technology has been used to realize the fabrications of the MLA and MIA. Based on nanoimprint technology, a complete integration technology on a flexible film substrate has been formed. Finally, a flexible 3D display film element has been fabricated, which has a light weight and can be curled.

8.
Nanoscale Res Lett ; 14(1): 230, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31297675

RESUMEN

In this study, double-sided polymer surface nanostructures are fabricated using twice nanoimprint lithography and metal deposition technique. We perform electrical property measurement on these double-sided surface nanostructures. Open-circuit voltage and short-circuit current of the as-prepared samples with double-sided surface nanostructures and conductive electrode are recorded using an oscilloscope with applying different external force. The measurements are carried out at room temperature. We find that the intensity of open-circuit voltage and short-circuit current for the double-sided surface nanostructures depends strongly on the sizes, shapes, and arrangements of nanostructures and pressure force. The strongest electrical property can be observed in the hexagon nanopillar arrays with the diameter of about 400 nm containing sub-50-nm resolution sharp structures at the force of about 40 N. We discuss the physical mechanisms responsible for these interesting research findings. The experimental results we study are relevant to the applications of double-sided surface nanostructures such as a nanogenerator, pressure sensors, and nano-optoelectronic devices.

9.
Micromachines (Basel) ; 10(3)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934585

RESUMEN

The artificial compound eye (ACE) structure is a new type of miniaturized, lightweight and intelligent imaging system. This paper has proposed to design a multi-spectral ACE structure to enable the structure to achieve multi-spectral information on the basis of imaging. The sub-eyes in the compound eye structure have been designed as diffractive beam splitting lenses with the same focal length of 20 mm, but with the different designed center wavelengths of 650 nm, 532 nm, and 445 nm, respectively. The proximity exposure lithography and reactive ion etching process were used to prepare the designed multi-spectral ACE structure, and the spectral splitting and multi-spectral imaging experiments were carried out to verify the multi-spectral imaging function of the structure without axial movement. Furthermore, the structure can be designed according to actual requirements, which can be applied to covert reconnaissance, camouflage identification, gas leakage or other fields.

10.
Micromachines (Basel) ; 9(6)2018 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-30424189

RESUMEN

Quantum correlated imaging using the intensity fluctuations of thermal light possesses advantages of high resolution and strong anti-interference ability. The common method to produce pseudo-thermal light source is using a rotary ground glass and transmission of laser beam. In the present work, we propose a method for the fabrication of microwell arrays with randomly varied diameters, which could be used as a new structural element for pseudo-thermal speckle light source. If these are etched with random sizes then they may also have random and complex varying curvatures (diffusion limited etching) leading to random destructive interference of the coherent beam which could be a good thing. The microwell arrays, with diameters randomly varying from 5 µm to 40 µm, height varying from 200 nm to 20 µm, were fabricated by photolithography combined with acid etching. The experimental conditions are simple and can be scaled up to for large structures. The produced microwell arrays can transform the laser beam to a pseudo-thermal light source with a certain divergent angle by rational designing of mask and adjustable process parameters.

11.
Micromachines (Basel) ; 9(10)2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30424441

RESUMEN

This paper presents an approach that is capable of producing a color image using a single composite diffractive optical element (CDOE). In this approach, the imaging function of a DOE and the spectral deflection characteristics of a grating were combined together to obtain a color image at a certain position. The DOE was designed specially to image the red, green, and blue lights at the same distance along an optical axis, and the grating was designed to overlay the images to an off-axis position. We report the details of the design process of the DOE and the grating, and the relationship between the various parameters of the CDOE. Following the design and numerical simulations, a CDOE was fabricated, and imaging experiments were carried out. Both the numerical simulations and the experimental verifications demonstrated a successful operation of this new approach. As a platform based on coaxial illumination and off-axis imaging, this system is featured with simple structures and no cross-talk of the light fields, which has huge potentials in applications such as holographic imaging.

12.
Bioinspir Biomim ; 13(2): 026012, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29350195

RESUMEN

Miniaturized bionic compound eyes featured with multi-aperture imaging have potential applications in the areas of micro opto-electro-mechanical-system. In this manuscript, we present a novel structure of the bionic compound eye with multiple focal lengths consists of an array of individual lenses with 1000 µm diameter. The simulation results of the designed multifocal bionic compound eye (MBCE) with two focal lengths of 190 mm and 44.4 mm demonstrate excellent two-order focusing abilities. Moving mask exposure technology was used to fabricate the designed MBCE with the corresponding imaging experiments conducted to validate the two-order imaging ability of the fabricated MBCE. Experimental results revealed that the developed structure has potential applications in diverse optical imaging systems such as three-dimensional imaging and real-time detection of unconfined or fluctuating targets.


Asunto(s)
Ojo Compuesto de los Artrópodos , Imagenología Tridimensional/instrumentación , Prótesis Visuales , Animales , Diseño de Equipo , Imagenología Tridimensional/métodos , Lentes
13.
Opt Express ; 25(11): 12531-12540, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786609

RESUMEN

Vector optical field has recently gained interest in a variety of application fields due to its novel characteristics. Conventional approaches of generating vector optical fields have difficulties in forming highly continuous polarization and suffer from the issue of high energy utilization rates. In order to address these issues, in this study a single optical path was proposed to generate vector optical fields where the birefringent phase plate modulated a linear polarized light into a vector optical field, which was then demodulated to a non-uniform linear polarization distribution of the vector optical field by the polarization demodulation module. Both a theoretical model and numerical simulations of the vector optical field generator were developed, illustrating the relationship between the polarization distribution of the target vector optical field and the depth distribution of the birefringent phase plate. Furthermore, the birefringent phase plate with predefined surface distributions was fabricated by grayscale exposure and ion etching. The generated vector optical field was experimentally characterized, capable of producing continuous polarization with high light energy utilization ratio, consistent with simulations. This new approach may have the potential of being widely used in future studies of generating well-controlled vector optical fields.

14.
Opt Express ; 25(13): 14323-14333, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28789018

RESUMEN

We report a novel and non-iterative method for the generation of phase-only Fourier hologram for image projection. Briefly, target image is first added with a special quadratic phase and then padded with zeros. A complex Fourier hologram is generated via the simple fast Fourier transform. Subsequently, the error diffusion algorithm is applied to convert the complex hologram into a phase-only hologram. The numerical, as well as the optical reconstructed images with the proposed method are of higher visual quality and contain less speckle noise compared to the original random phase method, which add the random phase to the target image and then preserve the phase component of the complex hologram. The influences of quadratic phase and zero-padding on the image quality are also discussed in detail.

15.
Opt Express ; 24(20): 22766-22776, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828347

RESUMEN

Iterative Fourier transform algorithms are widely used for creating holograms in holographic image projection. However, the reconstructed image always suffers from the speckle noise severely due to the uncontrolled phase distribution of the image. In this paper, a new iterative method is proposed to eliminate the speckle noise. In the iteration, the amplitude and phase in the signal window in the output plane are constrained to the desired distribution and a special object-dependent quadratic phase distribution, respectively. Since the phase of the reconstructed image is assigned artificially, the speckle noise came from the destructive interference between the sampling points with random and erratic phase distribution can be eliminated. To verify the method, simulations and experiments are performed. And the result shows that high quality, low noise images can be achieved.

16.
J Nanosci Nanotechnol ; 15(9): 6798-800, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26716246

RESUMEN

Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.


Asunto(s)
Nanosferas/química , Nanotecnología/métodos , Módulo de Elasticidad , Tamaño de la Partícula , Poliestirenos/química , Espectrometría Raman , Viscosidad
17.
Opt Express ; 23(7): 8620-9, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968700

RESUMEN

An economical method for fabricating spiral phase plate (SPP) with continuous surface is proposed in this paper. We use an interval to quantize a three dimensional surface of an SPP into two dimensional bars to form a binary mask. The exposure dose can be precisely distributed through this mask in the exposure process. We discuss the select criterion of the quantization interval and the fabricating processes of SPP in detail. In the results, we present the fabrication of four kinds of high quality SPPs with different topological charges. The morphology analysis and the corresponding optical measurements verify the reliability of our fabrication method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...