Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Cancer Res ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832931

DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that decrease 5'-cytosine methylation. DNMTi are used clinically based on the hypothesis that cytosine demethylation will lead to re-expression of tumor suppressor genes. 5-Aza-4'-thio-2'-deoxycytidine (Aza TdCyd or ATC) is a recently described thiol substituted DNMTi that has been shown to have anti-tumor activity in solid tumor models. Here, we investigated the therapeutic potential of ATC in a murine transplantation model of myelodysplastic syndrome. ATC treatment led to transformation of transplanted wild-type bone marrow nucleated cells into lymphoid leukemia, and healthy mice treated with ATC also developed lymphoid leukemia. Whole exome sequencing revealed thousands of acquired mutations, almost all of which were C>G transversions in a specific 5'-NCG-3' context. These mutations involved dozens of genes involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53, and Nf1. Human cells treated in vitro with ATC showed thousands of acquired C>G transversions in a similar context. Deletion of Dck, the rate-limiting enzyme for the cytidine salvage pathway, eliminated C>G transversions. Taken together, these findings demonstrate a highly penetrant mutagenic and leukemogenic phenotype associated with ATC.

2.
FASEB J ; 38(1): e23369, 2024 01.
Article En | MEDLINE | ID: mdl-38100642

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


MicroRNAs , Weightlessness , Humans , Mice , Animals , Muscle, Smooth, Vascular/metabolism , MicroRNAs/metabolism , Vascular Remodeling/genetics , Aorta/metabolism , Myocytes, Smooth Muscle/metabolism
3.
Res Sq ; 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38168433

DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that are used clinically to decrease 5'-cytosine methylation, with the aim of re-expression of tumor suppressor genes. We used a murine pre-clinical model of myelodysplastic syndrome based on transplantation of cells expressing a NUP98::HOXD13 transgene to investigate 5-Aza-4'-thio-2'-deoxycytidine (Aza TdCyd or ATC), a thiol substituted DNMTi, as a potential therapy. We found that ATC treatment led to lymphoid leukemia in wild-type recipient cells; further study revealed that healthy mice treated with ATC also developed lymphoid leukemia. Whole exome sequencing revealed thousands of acquired mutations, almost all of which were C > G transversions in a previously unrecognized, specific 5'-NCG-3' context. These mutations involved dozens of genes well-known to be involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53 , and Nf1 . Treatment of human cells in vitro showed thousands of acquired C > G transversions in a similar context. Deletion of Dck , the rate-limiting enzyme for the cytidine salvage pathway, eliminated C > G transversions. Taken together, these findings demonstrate that DNMTi can be potent mutagens in human and mouse cells, both in vitro and in vivo .

4.
FASEB J ; 36(9): e22430, 2022 09.
Article En | MEDLINE | ID: mdl-35920299

Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes.


Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Minichromosome Maintenance Complex Component 2 , Animals , DNA Replication , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Minichromosome Maintenance Complex Component 2/genetics , Mutation , Repressor Proteins/genetics , Transcription Factors/metabolism
5.
FASEB J ; 35(11): e21947, 2021 11.
Article En | MEDLINE | ID: mdl-34637552

Vascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation. Under the treatment of Ang II, miR-214 cKO mice exhibit substantially reduced systolic blood pressure. The vascular medial thickness and area in miR-214 cKO blood vessels were obviously reduced, the expression of collagen I and proinflammatory factors were also inhibited. VSMC-specific deletion of miR-214 blunts the response of blood vessels to the stimulation of endothelium-dependent and -independent vasorelaxation and phenylephrine and 5-HT induced vasocontraction. In vitro, Ang II-induced VSMC proliferation, migration, contraction, hypertrophy, and stiffness were all repressed with miR-214 KO in VSMC. To further explore the mechanism of miR-214 in the regulation of the VSMC function, it is very interesting to find that the TGF-ß signaling pathway is mostly enriched in miR-214 KO VSMC. Smad7, the potent negative regulator of the TGF-ß/Smad pathway, is identified to be the target of miR-214 in VSMC. By which, miR-214 KO sharply enhances Smad7 levels and decreases the phosphorylation of Smad3, and accordingly alleviates the downstream gene expression. Further, Ang II-induced hypertension and vascular dysfunction were reversed by antagomir-214. These results indicate that miR-214 in VSMC established a crosstalk between Ang II-induced AT1R signaling and TGF-ß induced TßRI /Smad signaling, by which it exerts a pivotal role in vascular remodeling and hypertension and imply that miR-214 has the potential as a therapeutic target for the treatment of hypertension.


Angiotensin II/pharmacology , Gene Knockout Techniques/methods , Hypertension/chemically induced , Hypertension/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Signal Transduction/genetics , Smad7 Protein/metabolism , Up-Regulation/genetics , Animals , Blood Pressure/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction/drug effects , Up-Regulation/drug effects , Vascular Remodeling/genetics
6.
Theranostics ; 11(3): 1429-1445, 2021.
Article En | MEDLINE | ID: mdl-33391543

Rationale: Breast cancer preferentially develops osteolytic bone metastasis, which makes patients suffer from pain, fractures and spinal cord compression. Accumulating evidences have shown that exosomes play an irreplaceable role in pre-metastatic niche formation as a communication messenger. However, the function of exosomes secreted by breast cancer cells remains incompletely understood in bone metastasis of breast cancer. Methods: Mouse xenograft models and intravenous injection of exosomes were applied for analyzing the role of breast cancer cell-derived exosomes in vivo. Effects of exosomes secreted by the mildly metastatic MDA231 and its subline SCP28 with highly metastatic ability on osteoclasts formation were confirmed by TRAP staining, ELISA, microcomputed tomography, histomorphometric analyses, and pit formation assay. The candidate exosomal miRNAs for promoting osteoclastogenesis were globally screened by RNA-seq. qRT-PCR, western blot, confocal microscopy, and RNA interfering were performed to validate the function of exosomal miRNA. Results: Implantation of SCP28 tumor cells in situ leads to increased osteoclast activity and reduced bone density, which contributes to the formation of pre-metastatic niche for tumor cells. We found SCP28 cells-secreted exosomes are critical factors in promoting osteoclast differentiation and activation, which consequently accelerates bone lesion to reconstruct microenvironment for bone metastasis. Mechanistically, exosomal miR-21 derived from SCP28 cells facilitates osteoclastogenesis through regulating PDCD4 protein levels. Moreover, miR-21 level in serum exosomes of breast cancer patients with bone metastasis is significantly higher than that in other subpopulations. Conclusion: Our results indicate that breast cancer cell-derived exosomes play an important role in promoting breast cancer bone metastasis, which is associated with the formation of pre-metastatic niche via transferring miR-21 to osteoclasts. The data from patient samples further reflect the significance of miR-21 as a potential target for clinical diagnosis and treatment of breast cancer bone metastasis.


Bone Neoplasms/genetics , Bone Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Exosomes/genetics , Animals , Bone Density/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Osteoclasts/pathology , Osteogenesis/genetics , RNA-Binding Proteins/genetics , Tumor Microenvironment/genetics
7.
Cell Prolif ; 53(3): e12783, 2020 Mar.
Article En | MEDLINE | ID: mdl-32101357

OBJECTIVES: Cardiac Ca2+ signalling plays an essential role in regulating excitation-contraction coupling and cardiac remodelling. However, the response of cardiomyocytes to simulated microgravity and hypergravity and the effects on Ca2+ signalling remain unknown. Here, we elucidate the mechanisms underlying the proliferation and remodelling of HL-1 cardiomyocytes subjected to rotation-simulated microgravity and 4G hypergravity. MATERIALS AND METHODS: The cardiomyocyte cell line HL-1 was used in this study. A clinostat and centrifuge were used to study the effects of microgravity and hypergravity, respectively, on cells. Calcium signalling was detected with laser scanning confocal microscopy. Protein and mRNA levels were detected by Western blotting and real-time PCR, respectively. Wheat germ agglutinin (WGA) staining was used to analyse cell size. RESULTS: Our data showed that spontaneous calcium oscillations and cytosolic calcium concentration are both increased in HL-1 cells after simulated microgravity and 4G hypergravity. Increased cytosolic calcium leads to activation of calmodulin-dependent protein kinase II/histone deacetylase 4 (CaMKII/HDAC4) signalling and upregulation of the foetal genes ANP and BNP, indicating cardiac remodelling. WGA staining indicated that cell size was decreased following rotation-simulated microgravity and increased following 4G hypergravity. Moreover, HL-1 cell proliferation was increased significantly under hypergravity but not rotation-simulated microgravity. CONCLUSIONS: Our study demonstrates for the first time that Ca2+ /CaMKII/HDAC4 signalling plays a pivotal role in myocardial remodelling under rotation-simulated microgravity and hypergravity.


Calcium Signaling , Hypergravity , Myocytes, Cardiac/metabolism , Weightlessness Simulation , Animals , Calcium/metabolism , Cell Line , Mice , Myocytes, Cardiac/cytology
8.
Gut Microbes ; 11(4): 807-819, 2020 07 03.
Article En | MEDLINE | ID: mdl-31924114

Interaction between humans and the gut microbiota is important for human physiology. Here, the gut microbiota was analyzed via metagenomic sequencing, and the fluctuations in the gut microbiota under the conditions of spaceflight were characterized. The composition and function of the gut microbiota were substantially affected by spaceflight; however, individual specificity was uncompromised. We further confirmed the species fluctuations and functional genes from both missions. Resistance and virulence genes in the gut microbiota were affected by spaceflight, but the species attributions remained stable. Spaceflight markedly affected the composition and function of the human gut microbiota, implying that the human gut microbiota is sensitive to spaceflight.


Bacteria/growth & development , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Space Flight , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteroides/genetics , Bacteroides/growth & development , Drug Resistance, Bacterial/genetics , Feces/microbiology , Firmicutes/genetics , Firmicutes/growth & development , Genes, Bacterial , Humans , Interspersed Repetitive Sequences , Metagenome , Virulence/genetics
9.
Rheumatology (Oxford) ; 59(5): 1159-1169, 2020 05 01.
Article En | MEDLINE | ID: mdl-31846044

OBJECTIVE: Bone loss is common in AS, and miR-214 plays an important role in regulating bone formation. The aim of this study was to investigate the effect of miR-214, the production of which is stimulated by IL-17A, on bone loss in AS. METHODS: Peripheral blood was obtained from 32 patients with AS and 24 healthy controls. Levels of IL-17A, soluble RANK ligand (RANKL) and osteoprotegerin in serum were evaluated by ELISA, and the relative level of miR-214 in serum was detected by real-time quantitative PCR. In addition, we assessed the relationship between levels of miR-214, IL-17A and bone loss in primary murine osteoblasts and mouse bone marrow cells. RESULTS: The expression of RANKL and miR-214 in osteoblasts was increased following stimulation by IL-17A, and osteoblasts stimulated by IL-17A promoted the expression of miR-214 in osteoclasts and the activity of osteoclasts. We showed that osteoblast-derived miR-214 could be transferred to osteoclasts and could then regulate their activity. The levels of IL-17A and miR-214 were much higher in the serum of patients with AS than in that of healthy controls, and the relative level of miR-214 was positively correlated with the level of IL-17A in the serum and synovial fluid of the patients with AS, not healthy controls. The level of miR-214 in the serum of AS patients has potential diagnostic value. CONCLUSION: The production of miR-214 in osteoblasts is stimulated by IL-17A. It is an important inhibitor of bone formation in AS, and the serum level of miR-214 might be of potential diagnostic value for AS.


Interleukin-17/metabolism , Osteogenesis , RANK Ligand/metabolism , Spondylitis, Ankylosing/blood , Spondylitis, Ankylosing/metabolism , Animals , Bone Resorption , Case-Control Studies , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Mice , MicroRNAs/metabolism , Osteoclasts/metabolism , Real-Time Polymerase Chain Reaction , Reference Values , Translational Research, Biomedical
10.
Elife ; 82019 07 10.
Article En | MEDLINE | ID: mdl-31290742

Mechanical load of the skeleton system is essential for the development, growth, and maintenance of bone. However, the molecular mechanism by which mechanical stimuli are converted into osteogenesis and bone formation remains unclear. Here we report that Piezo1, a bona fide mechanotransducer that is critical for various biological processes, plays a critical role in bone formation. Knockout of Piezo1 in osteoblast lineage cells disrupts the osteogenesis of osteoblasts and severely impairs bone structure and strength. Bone loss that is induced by mechanical unloading is blunted in knockout mice. Intriguingly, simulated microgravity treatment reduced the function of osteoblasts by suppressing the expression of Piezo1. Furthermore, osteoporosis patients show reduced expression of Piezo1, which is closely correlated with osteoblast dysfunction. These data collectively suggest that Piezo1 functions as a key mechanotransducer for conferring mechanosensitivity to osteoblasts and determining mechanical-load-dependent bone formation, and represents a novel therapeutic target for treating osteoporosis or mechanical unloading-induced severe bone loss.


Ion Channels/metabolism , Mechanotransduction, Cellular , Osteogenesis , Aged , Aged, 80 and over , Animals , Bone Resorption/pathology , Cell Line , Disease Models, Animal , Hindlimb Suspension , Humans , Mice , Osteoblasts/metabolism , Osteoporosis/metabolism , Osteoporosis/pathology , Weight-Bearing , Weightlessness
11.
FASEB J ; 33(6): 6904-6918, 2019 06.
Article En | MEDLINE | ID: mdl-30811956

Spaceflight leads to health risks including bone demineralization, skeletal muscle atrophy, cardiovascular dysfunction, and disorders of almost all physiologic systems. However, the impacts of microgravity on blood lineage cells and hematopoietic stem cells (HSCs) in vivo are largely unknown. In this study, we analyzed peripheral blood samples from 6 astronauts who had participated in spaceflight missions and found significant changes in several cell populations at different time points. These dynamic alterations of lineage cells and the role of HSCs were further studied in a mouse model, using hindlimb unloading (HU) to simulate microgravity. Large reductions in the frequency of NK cells, B cells, and erythrocyte precursors in the bone marrow of the HU mice were observed, together with an increased frequency of T cells, neutrophils, and HSCs. T cell levels recovered faster than those of B cells and erythrocyte precursors, whereas the recovery rates of NK cells and granulocytes were slow. In addition, competitive reconstitution experiments demonstrated the impaired function of HSCs, although these changes were reversible. Deep sequencing showed changes in the expression of regulatory molecules important for the differentiation of HSCs. This study provides the first determination of altered HSC function under simulated microgravity in vivo. The impairment of HSC function and differentiation provides an explanation for the immune disorders that occur under simulated microgravity. Thus, our findings demonstrated that spaceflight and simulated microgravity disrupt the homeostasis of immune system and cause dynamic alterations on both HSCs and lineage cells.-Cao, D., Song, J., Ling, S., Niu, S., Lu, L., Cui, Z., Li, Y., Hao, S., Zhong, G., Qi, Z., Sun, W., Yuan, X., Li, H., Zhao, D., Jin, X., Liu, C., Wu, X., Kan, G., Cao, H., Kang, Y., Yu, S., Li, Y. Hematopoietic stem cells and lineage cells undergo dynamic alterations under microgravity and recovery conditions.


Cell Differentiation , Cell Lineage , Hematopoietic Stem Cells/cytology , Hindlimb Suspension/physiology , Homeostasis , Recovery of Function , Weightlessness Simulation , Animals , Astronauts , Erythrocytes/cytology , Humans , Lymphocytes/cytology , Male , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Space Flight
12.
FASEB J ; 33(4): 5615-5625, 2019 04.
Article En | MEDLINE | ID: mdl-30668923

Hematopoietic stem cells (HSCs) have the capacity for self-renewal to maintain the HSCs' pool and the ability for multilineage differentiation, which are responsible for sustained production of multiple blood lineages. The regulation of HSC development is controlled precisely by complex signal networks and hematopoietic microenvironment, which has been termed the HSCs' niche. The Wnt signaling pathway is one of a variety of signaling pathways that have been involved in HSC self-renewal and maintenance. Previous studies are indeterminant on the regulation of adult HSCs upon canonical Wnt signaling pathways because of the different experimental systems and models used. In this study, we generated the conditional knockout Wnt coreceptor low-density lipoprotein receptor-related protein 5 (Lrp5) and low-density lipoprotein receptor-related protein 6 (Lrp6) mice in adult hematopoiesis via Vav-Cre Loxp system. Inactivation of Lrp5 and -6 in a hematopoietic system diminished the pool of HSCs, but there were no obvious defects in mature immune cells. Lrp5 and -6 double deficiency HSCs showed intrinsic defects in self-renewal and differentiation due to reduced proliferation and increased quiescence of the cell cycle. Analysis of HSC gene expression suggested that the quiescence regulators were significantly up-regulated, such as Egr1, Cdkn1a, Nr4a1, Gata2, Junb and Btg2, and the positive cell cycle regulators were correspondingly down-regulated, such as Ccna2 and Ranbp1. Taken together, we investigated the roles of Lrp5 and -6 in HSCs by functional and bioinformatic assays, and we demonstrated that Lrp5 and -6 are required for the self-renewal and differentiation of adult HSCs. The canonical Wnt pathway may contribute to maintaining the HSC pool and regulate the differentiation of adult HSCs by controlling cell cycle gene regulatory module.-Liu, J., Cui, Z., Wang, F., Yao, Y., Yu, G., Liu, J., Cao, D., Niu, S., You, M., Sun, Z., Lian, D., Zhao, T., Kang, Y., Zhao, Y., Xue, H.-H., Yu, S. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells.


Cell Differentiation/physiology , Hematopoietic Stem Cells/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Animals , Cell Cycle/physiology , Down-Regulation/physiology , Hematopoiesis/physiology , Mice , Stem Cell Niche/physiology , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology
13.
Phytomedicine ; 56: 83-93, 2019 Mar 15.
Article En | MEDLINE | ID: mdl-30668357

BACKGROUND: Cardiac atrophy and reduced cardiac distensibility have been reported following space flight. Cardiac function is correspondingly regulated in response to changes in loading conditions. Panax quinquefolium saponin (PQS) improves ventricular remodeling after acute myocardial infarction by alleviating endoplasmic reticulum stress and Ca2+overload. However, whether PQS can ameliorate cardiac atrophy following exposure to simulated microgravity remains unknown. PURPOSE: To explore the protective role of PQS in cardiac remodeling under unloading conditions and its underlying mechanisms. METHODS: Hindlimb unloading (HU) model was used to simulate unloading induced cardiac remodeling. Forty-eight male rats were randomly assigned to four groups, including control, PQS, HU and HU + PQS. At 8 weeks after the experiment, cardiac structure and function, serum levels of Creatine Kinase-MB (CK-MB), Cardiactroponin T (cTnT), ischemia modified albumin (IMA), and cardiomyocyte apoptosis were measured. Network pharmacology analysis was used to predict the targets of the six major constituents of PQS, and the signaling pathways they involved in were analyzed by bioinformatics methods. Changes in the key proteins involved in the protective effects of PQS were further confirmed by Western Blot. RESULTS: Simulated microgravity led to increases in serum levels of CK-MB, cTnT and IMA, remodeling of cardiac structure, impairment of cardiac function, and increased cardiomyocyte apoptosis as compared with control. PQS treatment significantly reduced serum levels of CK-MB, cTnT and IMA, improved the impaired cardiac structure and function, and decreased cardiomyocyte apoptosis induced by unloading. The activation of AMPK and inhibition of Erk1/2 and CaMKII/HDAC4 were demonstrated in the cardiocytes of HU rats after PQS treatment. CONCLUSION: PQS provides protection against cardiac remodeling induced by simulated microgravity, partly resulting from changes in the signaling pathways related to energy metabolism reduction, calcium overloading and cell apoptosis.


Cardiotonic Agents/pharmacology , Myocardial Infarction/drug therapy , Saponins/pharmacology , Ventricular Remodeling/drug effects , Weightlessness/adverse effects , Animals , Apoptosis/drug effects , Biomarkers/blood , Endoplasmic Reticulum Stress/drug effects , Male , Myocardial Infarction/etiology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley , Serum Albumin/analysis , Serum Albumin, Human , Signal Transduction/drug effects
14.
Front Physiol ; 9: 40, 2018.
Article En | MEDLINE | ID: mdl-29422872

Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1) is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG) and wild type mice were hindlimb-suspended (HU) to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity.

15.
Front Pharmacol ; 8: 315, 2017.
Article En | MEDLINE | ID: mdl-28611667

Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

16.
Front Physiol ; 7: 274, 2016.
Article En | MEDLINE | ID: mdl-27445861

Physiological adaptations to microgravity involve alterations in cardiovascular systems. These adaptations result in cardiac remodeling and orthostatic hypotension. However, the response of the left ventricle (LV) and right ventricle (RV) following hindlimb unloading (HU) and hindlimb reloading (HR) is not clear and the underlying mechanism remains to be understood. In this study, three groups of mice were subjected to HU by tail suspension for 28 days. Following this, two groups were allowed to recover for 7 or 14 days. The control group was treated equally, with the exception of tail suspension. Echocardiography was performed to detect the structure and function changes of heart. Compared with the control, the HU group of mice showed reduced LV-EF (ejection fraction), and LV-FS (fractional shortening). However, mice that were allowed to recover for 7 days after HU (HR-7d) showed increased LVIDs (systolic LV internal diameter) and LV Vols (systolic LV volume). Mice that recovered for 14 days (HR-14d) returned to the normal state. In comparison, RV-EF and RV-FS didn't recover to the normal conditions till being reloaded for 14 days. Compared with the control, RVIDd (diastolic RV internal diameter), and RV Vold (diastolic RV volume) were reduced in HU group and recovered to the normal conditions in HR-7d and HR-14d groups, in which groups RVIDs (systolic RV internal diameter) and RV Vols (systolic RV volume) were increased. Histological analysis and cardiac remodeling gene expression results indicated that HU induces left and right ventricular remodeling. Western blot demonstrated that the phosphorylation of HDAC4 and ERK1/2 and the ratio of LC3-II / LC3-I, were increased following HU and recovered following HR in both LV and RV, and the phosphorylation of AMPK was inhibited in both LV and RV following HU, but only restored in LV following HR for 14 days. These results indicate that simulated microgravity leads to cardiac remodeling, and the remodeling changes can be reversed. Furthermore, in the early stages of recovery, cardiac remodeling may be intensified. Finally, compared with the LV, the RV is not as easily reversed. Cardiac remodeling pathways, such as, HDAC4, ERK1/2, LC3-II, and AMPK were involved in the process.

...