Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5803, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987241

RESUMEN

Mammalian hibernators survive prolonged periods of cold and resource scarcity by temporarily modulating normal physiological functions, but the mechanisms underlying these adaptations are poorly understood. The hibernation cycle of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) lasts for 5-7 months and comprises weeks of hypometabolic, hypothermic torpor interspersed with 24-48-h periods of an active-like interbout arousal (IBA) state. We show that ground squirrels, who endure the entire hibernation season without food, have negligible hunger during IBAs. These squirrels exhibit reversible inhibition of the hypothalamic feeding center, such that hypothalamic arcuate nucleus neurons exhibit reduced sensitivity to the orexigenic and anorexigenic effects of ghrelin and leptin, respectively. However, hypothalamic infusion of thyroid hormone during an IBA is sufficient to rescue hibernation anorexia. Our results reveal that thyroid hormone deficiency underlies hibernation anorexia and demonstrate the functional flexibility of the hypothalamic feeding center.


Asunto(s)
Anorexia , Ghrelina , Hibernación , Hipotálamo , Sciuridae , Animales , Hibernación/fisiología , Sciuridae/fisiología , Anorexia/fisiopatología , Anorexia/metabolismo , Hipotálamo/metabolismo , Ghrelina/metabolismo , Ghrelina/deficiencia , Leptina/deficiencia , Leptina/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Masculino , Hormonas Tiroideas/metabolismo , Nivel de Alerta/fisiología , Femenino , Estaciones del Año , Conducta Alimentaria/fisiología
2.
BMC Cardiovasc Disord ; 24(1): 280, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811893

RESUMEN

BACKGROUND: Myocardial ischemia-reperfusion injury (I/RI) is a major cause of perioperative cardiac-related adverse events and death. Studies have shown that sevoflurane postconditioning (SpostC), which attenuates I/R injury and exerts cardioprotective effects, regulates mitochondrial dynamic balance via HIF-1α, but the exact mechanism is unknown. This study investigates whether the PI3K/AKT pathway in SpostC regulates mitochondrial dynamic balance by mediating HIF-1α, thereby exerting myocardial protective effects. METHODS: The H9C2 cardiomyocytes were cultured to establish the hypoxia-reoxygenation (H/R) model and randomly divided into 4 groups: Control group, H/R group, sevoflurane postconditioning (H/R + SpostC) group and PI3K/AKT blocker (H/R + SpostC + LY) group. Cell survival rate was determined by CCK-8; Apoptosis rate was determined by flow cytometry; mitochondrial membrane potential was evaluated by Mito Tracker™ Red; mRNA expression levels of AKT, HIF-1α, Opa1and Drp1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR); Western Blot assay was used to detect the protein expression levels of AKT, phosphorylated AKT (p-AKT), HIF-1α, Opa1 and Drp1. RESULTS: Compared with the H/R group, the survival rate of cardiomyocytes in the H/R + SpostC group increased, the apoptosis rate decreased and the mitochondrial membrane potential increased. qRT-PCR showed that the mRNA expression of HIF-1α and Opa1 were higher in the H/R + SpostC group compared with the H/R group, whereas the transcription level of Drp1 was lower in the H/R + SpostC group. In the H/R + SpostC + LY group, the mRNA expression of HIF-1α was lower than the H/R + SpostC group. There was no difference in the expression of Opa1 mRNA between the H/R group and the H/R + SpostC + LY group. WB assay results showed that compared with the H/R group, the protein expression levels of HIF-1α, Opa1, P-AKT were increased and Drp1 protein expression levels were decreased in the H/R + SpostC group. HIF-1α, P-AKT protein expression levels were decreased in the H/R + SpostC + LY group compared to the H/R + SpostC group. CONCLUSION: SpostC mediates HIF-1α-regulated mitochondrial fission and fusion-related protein expression to maintain mitochondrial dynamic balance by activating the PI3K/AKT pathway and increasing AKT phosphorylation, thereby attenuating myocardial I/R injury.


Asunto(s)
Apoptosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas , Dinámicas Mitocondriales , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt , Sevoflurano , Transducción de Señal , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/enzimología , Sevoflurano/farmacología , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/enzimología , Dinámicas Mitocondriales/efectos de los fármacos , Línea Celular , Ratas , Apoptosis/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/enzimología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Hipoxia de la Célula , Dinaminas/metabolismo , Dinaminas/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Citoprotección , Poscondicionamiento Isquémico , Fosforilación
3.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559054

RESUMEN

Mammalian hibernators survive prolonged periods of cold and resource scarcity by temporarily modulating normal physiological functions, but the mechanisms underlying these adaptations are poorly understood. The hibernation cycle of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) lasts for 5-7 months and comprises weeks of hypometabolic, hypothermic torpor interspersed with 24-48-hour periods of an active-like interbout arousal (IBA) state. We show that ground squirrels, who endure the entire hibernation season without food, have negligible hunger during IBAs. These squirrels exhibit reversible inhibition of the hypothalamic feeding center, such that hypothalamic arcuate nucleus neurons exhibit reduced sensitivity to the orexigenic and anorexigenic effects of ghrelin and leptin, respectively. However, hypothalamic infusion of thyroid hormone during an IBA is sufficient to rescue hibernation anorexia. Our results reveal that thyroid hormone deficiency underlies hibernation anorexia and demonstrate the functional flexibility of the hypothalamic feeding center.

4.
Front Physiol ; 14: 1084332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37035673

RESUMEN

The gastrointestinal tract contains a complex microbial community. Peyer's patches (PPs) play an important role in inducing mucosal immune responses in the gastrointestinal tract. However, little is known about the effect of commensal microbiota on the host's PPs. Here, we analyzed the phenotypic-to-transcriptome changes in the intestine PPs of specific pathogen-free (SPF) and germ-free (GF) piglets (fed in an environment with and without commensal microbiota, respectively) to elucidate the role of commensal microbiota in host intestine mucosal immunity. Analyses of anatomical and histological characteristics showed that commensal microbiota deficiency led to PP hypoplasia, especially regarding B and T cells. A total of 12,444 mRNAs were expressed in 12 libraries; 2,156 and 425 differentially expressed (DE) mRNAs were detected in the jejunal PP (JPP) and ileal PP (IPP), respectively (SPF vs. GF). The shared DE mRNAs of the JPP and IPP were mainly involved in basic physiological and metabolic processes, while the specific DE mRNAs were enriched in regulating immune cells in the JPP and microbial responses and cellular immunity in the IPP. Commensal microbiota significantly modulated the expression of genes related to B-cell functions, including activation, proliferation, differentiation, apoptosis, receptor signaling, germinal center formation, and IgA isotype class switching, particularly in the JPP. TLR4 pathway-related genes were induced in response to microbial colonization and in LPS/SCFA-treated B cells. We also detected 69 and 21 DE lncRNAs in the JPP and IPP, respectively, and four one-to-one lncRNA-mRNA pairs were identified. These findings might represent key regulatory axes for host intestine mucosal immunity development during microbial colonization. Overall, the findings of this study revealed that commensal microbiota modulated phenotypic characteristics and gene expression in the piglet intestine PPs and underscored the importance of early microbial colonization for host mucosal immunity development.

5.
Metab Brain Dis ; 38(5): 1643-1656, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36947333

RESUMEN

This study aims to investigate the effect of irisin on ethanol-induced behavioral deficits and explore the underlying mechanisms. A mouse model of ethanol addiction/withdrawal was constructed through chronic ethanol administration. Depressive-like behaviors were evaluated by the tail suspension test and forced swimming test, and anxiety-like behaviors were evaluated by the marble-burying test and elevated plus maze test. The expression of Nrf2 was measured by western blotting. Levels of inflammatory mediators (NF-κB, TNF-α, IL-1ß and IL-6) and oxidative stress factors (ROS, MDA, GSH and SOD) were detected by ELISA. The ethanol-induced PC12/BV2 cell injury model was used to elucidate whether the effect of irisin on ethanol-induced neurological injury was related to anti-inflammatory and antioxidant mechanisms. Ethanol-induced ethanol preference and emotional deficits were improved by chronic irisin treatment; however, these improvements were partly reversed by cotreatment with the Nrf2 inhibitor ML385. Further results implied that the improvement effect of irisin on behavioral abnormalities may be related to its anti-inflammatory and antioxidant effects. In detail, irisin inhibited ethanol-induced abnormal expression of ROS and MDA and upregulated the expression of GSH and SOD. Meanwhile, irisin treatment inhibited ethanol-induced overexpression of NF-κB, TNF-α, IL-1ß and IL-6 in the hippocampus and cerebral cortex. The regulation of oxidative stress factors by irisin was reversed after ML385 treatment. In the in vitro study, overexpression of oxidative stress factors in ethanol-treated PC12 cells was inhibited by irisin treatment; however, the prevention was reversed after the knockdown of Nrf2 siRNA. Moreover, ethanol-induced overexpression of inflammatory mediators in BV2 cells was also inhibited by irisin treatment. Irisin improved depressive and anxiety-like behaviors induced by ethanol addiction/withdrawal in mice, and this protection was greatly associated with the NF-κB-mediated anti-inflammatory signaling pathway and Nrf2-mediated antioxidative stress signaling pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Ratas , Ratones , Animales , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fibronectinas/farmacología , Fibronectinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Etanol/toxicidad , Antioxidantes/farmacología , Estrés Oxidativo , Antiinflamatorios/farmacología , Superóxido Dismutasa/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo
6.
Opt Lett ; 43(23): 5729-5732, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499979

RESUMEN

We demonstrated the subangstrom precise correction of surface nanoscale axial photonics (SNAP) micro-resonators by the femtosecond (fs) laser postprocessing technique for the first time. The internal stress can be induced by fs laser inscriptions in the fiber, causing nanoscale effective radius variation (ERV). However, the obtained ultraprecise fabrication usually undergoes multiple tries. Here, we propose a novel postprocessing technique based on the fs laser that significantly reduces the ERV errors and improves the fabrication precision without iterative corrections. The postexposure process is achieved at the original exposure locations using lower pulse energy than that in the initial fabrication process. The results show that the ERV is nearly proportional to the pulse energy of the postexposure process. The slope of the ERV versus the pulse energy is 0.07 Å/nJ. The maximum of the postprocessed ERV can reach 8.0 Å. The repeatability was experimentally verified by accomplishing the correction on three SNAP microresonators with the precision of 0.75 Å. The developed fabrication technique with fs laser enables SNAP microresonators with new breakthrough applications for optomechanics and filters.

7.
Sci Rep ; 8(1): 10745, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013139

RESUMEN

Germ-free (GF) pigs have clear microbiological backgrounds, and are extensively used as large animal models in the biomedical sciences. However, investigations of the transcriptomic differences between GF and cesarean-derived conventional (CV) piglets are limited. To improve our understanding of GF pigs, and to increase the utility of pigs as an alternative non-rodent model, we used RNA sequencing to profile gene expression in five tissues (the oral mucosae, jejunum, colon, liver, and spleen) of four male GF piglets and four male CV piglets from the same litter. We identified 14 genes that were differentially expressed in all five tissues. Seven of these common differentially expressed genes (DEGs) were interferon-inducible genes, and all 14 were consistently downregulated in the GF piglets as compared to the CV piglets. Compared to the other tissues tested, the expression of transcription factors (TFs) in the colon was most affected by the absence of a microbiota. The expression patterns of immune-related genes were downregulated in the GF piglets as compared to the CV piglets, indicating that the intestinal microbiota influenced gene expression in other tissues besides the gut. Gene Ontology (GO) analysis indicated that, in pigs, the intestinal microbiota affected the expression of genes related to immune system function and development.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Vida Libre de Gérmenes/genética , Sistema Inmunológico/crecimiento & desarrollo , ARN Mensajero/metabolismo , Transcriptoma/genética , Animales , Animales Recién Nacidos/genética , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/inmunología , Colon/metabolismo , Regulación hacia Abajo/inmunología , Perfilación de la Expresión Génica , Yeyuno/metabolismo , Hígado/metabolismo , Masculino , Modelos Animales , Mucosa Bucal/metabolismo , Análisis de Secuencia de ARN , Bazo/metabolismo , Porcinos/genética , Porcinos/crecimiento & desarrollo , Porcinos/inmunología , Transcriptoma/inmunología
8.
Opt Express ; 25(24): 29896-29905, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29221025

RESUMEN

We propose and demonstrate a highly sensitive refractive index (RI) sensor based on a novel fiber-optic multi-mode interferometer (MMI), which is formed with a femtosecond-laser-induced in-core negative refractive index modified line in a standard single mode fiber. The proposed MMI structure is directly written with femtosecond laser in one step, which removes the splicing process needed in conventional MMI fabrication and also significantly improves the robustness. This device exhibits a high sensitivity to surrounding refractive index, with a maximum sensitivity up to 10675.9 nm/RIU at the RI range of 1.4484-1.4513. The distinct advantages of high sensitivity, compact, robust and assembly-free all-fiber structure make it attractive for real physical, chemical and biological sensing.

9.
Opt Lett ; 42(16): 3145-3148, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28809894

RESUMEN

Most sensors face a common trade-off between high sensitivity and a large dynamic range. We demonstrate here an all-fiber refractometer based on a dual-cavity Fabry-Perot interferometer (FPI) that possesses the advantage of both high sensitivity and a large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and the short cavity, respectively. The short-cavity FPI and the use of an intensity demodulation method mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suit the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and a large dynamic range in a composite FPI is of great significance to practical RI measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...