Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
J Econ Entomol ; 117(3): 1141-1151, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38706118

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.


Bombyx , Gastrointestinal Microbiome , Nucleopolyhedroviruses , Animals , Bombyx/virology , Bombyx/microbiology , Bombyx/growth & development , Nucleopolyhedroviruses/physiology , Larva/virology , Larva/microbiology , Larva/growth & development , Feces/microbiology , Feces/virology
2.
Insect Biochem Mol Biol ; 169: 104125, 2024 Jun.
Article En | MEDLINE | ID: mdl-38616030

Voltage-dependent anion channel 2 (VDAC2) is an important channel protein that plays a crucial role in the host response to viral infection. The receptor for activated C kinase 1 (RACK1) is also a key host factor involved in viral replication. Our previous research revealed that Bombyx mori VDAC2 (BmVDAC2) and B. mori RACK1 (BmRACK1) may interact with Bombyx mori nucleopolyhedrovirus (BmNPV), though the specific molecular mechanism remains unclear. In this study, the interaction between BmVDAC2 and BmRACK1 in the mitochondria was determined by various methods. We found that BmNPV p35 interacts directly with BmVDAC2 rather than BmRACK1. BmNPV infection significantly reduced the expression of BmVDAC2, and activated the mitochondrial apoptosis pathway. Overexpression of BmVDAC2 in BmN cells inhibited BmNPV-induced cytochrome c (cyto c) release, decrease in mitochondrial membrane potential as well as apoptosis. Additionally, the inhibition of cyto c release by BmVDAC2 requires the involvement of BmRACK1 and protein kinase C. Interestingly, overexpression of p35 inhibited cyto c release during mitochondrial apoptosis in a RACK1 and VDAC2-dependent manner. Even the mutant p35, which loses Caspase inhibitory activity, could still bind to VDAC2 and inhibit cyto c release. In summary, our results indicated that BmNPV p35 interacts with the VDAC2-RACK1 complex to regulate apoptosis by inhibiting cyto c release. These findings confirm the interaction between BmVDAC2 and BmRACK1, the interaction between p35 and the VDAC2-RACK1 complex, and a novel target that BmNPV p35 regulates apoptosis in Bombyx mori via interaction with the BmVDAC2-BmRACK1 complex. The result provide an initial exploration of the function of this interaction in the BmNPV-induced mitochondrial apoptosis pathway.


Apoptosis , Bombyx , Insect Proteins , Nucleopolyhedroviruses , Receptors for Activated C Kinase , Animals , Bombyx/virology , Bombyx/metabolism , Bombyx/genetics , Nucleopolyhedroviruses/physiology , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Voltage-Dependent Anion Channel 2/metabolism , Voltage-Dependent Anion Channel 2/genetics , Mitochondria/metabolism
3.
Insect Mol Biol ; 33(3): 259-269, 2024 Jun.
Article En | MEDLINE | ID: mdl-38335442

The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.


Bombyx , MicroRNAs , Nucleopolyhedroviruses , Animals , Bombyx/virology , Bombyx/genetics , Bombyx/metabolism , Down-Regulation , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/virology , Larva/genetics , Larva/growth & development , MicroRNAs/metabolism , MicroRNAs/genetics , Nucleopolyhedroviruses/physiology , Pyridoxal Phosphate/metabolism , Virus Replication
4.
Insect Sci ; 2024 Jan 22.
Article En | MEDLINE | ID: mdl-38258370

MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.

5.
Mol Carcinog ; 62(6): 771-785, 2023 06.
Article En | MEDLINE | ID: mdl-36988339

Replication factor C 5 (RFC5) is involved in a variety of biological functions of cancer. However, the expression pattern of RFC5 and the underlying mechanisms in colorectal cancer (CRC) remain elusive. Here, we show that RFC5 is significantly upregulated in CRC tissues and cells. Patients with CRC and increased RFC5 levels have an unfavorable prognosis. RFC5 can promote the proliferation, migration, and invasion of CRC cells and inhibit the apoptosis of CRC cells. Additionally, upstream of RFC5, we constructed the competing endogenous RNA network and confirmed that RFC5 in this network was inhibited by miR-3614-5p by directly targeting its 3'-untranslated regions. We verified that circ_0038985, which is positively correlated with RFC5, directly targeted miR-3614-5p. Overexpression of circ_0038985 promoted CRC cell migration and invasion, and these effects were partially reversed by the reintroduction of miR-3614-5p. Moreover, we found that RFC5 may promote the vascular endothelial growth factor A (VEGFa)/vascular endothelial growth factor receptor 2 (VEGFR2)/extracellular signal-regulated protein kinase (ERK) pathway. The knockdown of RFC5 reduced CRC tumorigenesis in vivo. Collectively, these data demonstrate that the circ_0038985/miR-3614-5p/RFC5 axis plays a critical role in the progression of CRC, and RFC5 may promote CRC progression by affecting the VEGFa/VEGFR2/ERK pathway.


Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Vascular Endothelial Growth Factor A/metabolism , Replication Protein C/genetics , Replication Protein C/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Oncogenes
6.
Int J Biol Macromol ; 235: 123834, 2023 Apr 30.
Article En | MEDLINE | ID: mdl-36842745

c-Jun N-terminal kinase (JNK) phosphorylation is widely observed during virus infection, modulating various aspects of the virus-host interaction. In our previous research, we have proved that B. mori ferritin heavy-chain homolog (BmFerHCH), an inhibitor of reactive oxygen species (ROS), facilitates B. mori nucleopolyhedrovirus (BmNPV) proliferation. However, one question remains: Which downstream signaling pathways does BmFerHCH regulate by inhibiting ROS? Here, we first determined that silencing BmFerHCH inhibits BmNPV proliferation, and this inhibition depends on ROS. Then, we substantiated that BmNPV infection activates the JNK signaling pathway. Interestingly, the JNK phosphorylation during BmNPV infection is activated by ROS. Further, we found that the enhanced nuclear translocation of phospho-JNK induced by BmNPV infection was dramatically reduced by pretreatment with the antioxidant N-acetylcysteine (NAC), whereas there was more detectable phospho-JNK in the cytoplasm. Next, we investigated how changes in BmFerHCH expression affect JNK phosphorylation. BmFerHCH overexpression suppressed the phosphorylation of JNK and nuclear translocation of phospho-JNK during BmNPV infection, whereas BmFerHCH knockdown facilitated phosphorylation of JNK and nuclear translocation of phospho-JNK. By measuring the viral load, we found the inhibitory effect of BmFerHCH knockdown on BmNPV infection depends on phosphorylated JNK. In addition, the JNK signaling pathway was involved in BmNPV-triggered apoptosis. Hence, we hypothesize that ROS-mediated JNK phosphorylation is involved in the regulation of BmFerHCH on BmNPV proliferation. These results elucidate the molecular mechanisms and signaling pathways of BmFerHCH-mediated response to BmNPV infection.


Bombyx , Nucleopolyhedroviruses , Animals , Phosphorylation , Nucleopolyhedroviruses/physiology , Reactive Oxygen Species/metabolism , Apoferritins/metabolism , MAP Kinase Signaling System , Cell Proliferation , Bombyx/metabolism , Insect Proteins/metabolism
7.
Oncol Res ; 32(2): 353-360, 2023.
Article En | MEDLINE | ID: mdl-38186575

Colorectal cancer (CRC) stands among the top prevalent cancers worldwide and holds a prominent position as a major contributor to cancer-related mortality globally. Absent in melanoma 2 (AIM2), a constituent of the interferon-inducible hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats protein family, contributes to both cancer progression and inflammasome activation. Despite this understanding, the precise biological functions and molecular mechanisms governed by AIM2 in CRC remain elusive. Consequently, this study endeavors to assess AIM2's expression levels, explore its potential antitumor effects, elucidate associated cancer-related processes, and decipher the underlying signaling pathways in CRC. Our findings showed a reduced AIM2 expression in most CRC cell lines. Elevation of AIM2 levels suppressed CRC cell proliferation and migration, altered cell cycle by inhibiting G1/S transition, and induced cell apoptosis. Further research uncovered the participation of P38 mitogen-activated protein kinase (P38MAPK) in AIM2-mediated modulation of CRC cell apoptosis and proliferation. Altogether, our achievements distinctly underscored AIM2's antitumor role in CRC. AIM2 overexpression inhibited proliferation and migration and induced apoptosis of CRC cells via activating P38MAPK signaling pathway, indicating AIM2 as a prospective and novel therapeutic target for CRC.


Colorectal Neoplasms , Melanoma , Humans , Apoptosis , Cell Proliferation , Colorectal Neoplasms/genetics , Interferons , Prospective Studies , Signal Transduction
8.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article En | MEDLINE | ID: mdl-36142290

Ferritin heavy chain (FerHCH) is a major component of ferritin and plays an important role in maintaining iron homeostasis and redox equilibrium. Our previous studies have demonstrated that the Bombyx mori ferritin heavy chain homolog (BmFerHCH) could respond to B. mori nucleopolyhedrovirus (BmNPV) infection. However, the mechanism by which BmNPV regulates the expression of BmFerHCH remains unclear. In this study, BmFerHCH increased after BmNPV infection and BmNPV infection enhanced nuclear factor kappa B (NF-κB) activity in BmN cells. An NF-κB inhibitor (PDTC) reduced the expression of the virus-induced BmFerHCH in BmN cells, and overexpression of BmRelish (NF-κB) increased the expression of virus-induced BmFerHCH in BmN cells. Furthermore, BmNPV infection enhanced BmFerHCH promoter activity. The potential NF-κB cis-regulatory elements (CREs) in the BmFerHCH promoter were screened by using the JASPAR CORE database, and two effective NF-κB CREs were identified using a dual luciferase reporting system and electrophoretic mobility shift assay (EMSA). BmRelish (NF-κB) bound to NF-κB CREs and promoted the transcription of BmFerHCH. Taken together, BmNPV promotes activation of BmRelish (NF-κB), and activated BmRelish (NF-κB) binds to NF-κB CREs of BmFerHCH promoter to enhance BmFerHCH expression. Our study provides a foundation for future research on the function of BmFerHCH in BmNPV infection.


Bombyx , Nucleopolyhedroviruses , Animals , Apoferritins/metabolism , Bombyx/metabolism , Ferritins/genetics , Ferritins/metabolism , Iron/metabolism , NF-kappa B/metabolism , Nucleopolyhedroviruses/physiology
9.
Int J Biol Macromol ; 217: 842-852, 2022 Sep 30.
Article En | MEDLINE | ID: mdl-35905762

Ferritin heavy-chain homolog (FerHCH), an iron-binding protein, plays an important role in the host defense against oxidative stress and pathogen infections. In our previous research, Bombyx mori native ferritin had an interaction with B. mori nucleopolyhedrovirus (BmNPV). However, the underlying molecular mechanism of single ferritin homolog responses to BmNPV infection remains unclear. In this study, we found that BmNPV titer and B. mori FerHCH (BmFerHCH) expression were positively correlated with the ferric iron concentration. We performed RNA interference (RNAi) and overexpression experiments to investigate the effects of BmFerHCH on BmNPV proliferation. BmFerHCH knockdown suppressed BmNPV proliferation in vivo and in vitro, whereas BmFerHCH overexpression facilitated BmNPV proliferation. In addition, the oxidative stress level was increased significantly in BmN cells after budded virus infection, while BmFerHCH could neutralize the increased ROS production induced by BmNPV. Of note, we found that ROS was involved in BmNPV-induced apoptosis. Through inhibiting ROS, apoptosis was suppressed by BmFerHCH, whereas BmFerHCH knockdown facilitated apoptosis. Therefore, we hypothesize that BmFerHCH-mediated inhibition of virus-induced apoptosis depends on suppressing ROS accumulation and, thereby, facilitates virus replication. These results suggest that BmFerHCH plays an important role in facilitating BmNPV proliferation and modulating BmFerHCH is potential strategy for studying host-pathogen interactions.


Bombyx , Nucleopolyhedroviruses , Animals , Apoferritins/metabolism , Apoptosis , Bombyx/genetics , Cell Proliferation , Ferritins/genetics , Ferritins/metabolism , Nucleopolyhedroviruses/genetics , Reactive Oxygen Species/metabolism
10.
Pathol Res Pract ; 229: 153706, 2022 Jan.
Article En | MEDLINE | ID: mdl-34929599

Solute carrier family 34 member 2 (SLC34A2), a family member of sodium-driven phosphate cotransporters, has been reported to facilitate cell proliferation and tumor growth. However, the functional mechanism by which SLC34A2 promotes cell growth and cell cycle progression remains poorly understood. Here, we reported that SLC34A2 was overexpressed in CRC by analysis of TCGA and GEO datasets. A total of 45 differentially expressed genes (DEGs) were identified from comparing SLC34A2-high or -low groups and functional enrichment analysis of these DEGs demonstrated that cell cycle pathway was enriched. Interestingly, we found a positive correlation between TMPRSS3 (transmembrane serine protease 3) and SLC34A2, which was confirmed by RT-qPCR and western blotting. Furthermore, TMPRSS3 was also upregulated in CRC tumor tissues compared to normal tissues. Patients with high TMPRSS3 expression had poor prognosis. Functionally, TMPRSS3 deficiency inhibited cell proliferation and colony formation in CRC cells. TMPRSS3 overexpression in SLC34A2-deficient cells antagonized siSLC34A2-mediated cell cycle inhibition by promoting cyclin E, cyclin A protein expression. Based on these results, our study suggests that SLC34A2 promotes cancer proliferation and cell cycle progression by targeting TMPRSS3 in colorectal cancer cells.


Cell Cycle/physiology , Cell Proliferation , Colorectal Neoplasms/pathology , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Serine Endopeptidases/physiology , Sodium-Phosphate Cotransporter Proteins, Type IIb/physiology , Humans , Tumor Cells, Cultured
11.
Insects ; 12(8)2021 Aug 18.
Article En | MEDLINE | ID: mdl-34442307

ß-1,3-glucan recognition proteins (ßGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori ß-1,3-glucan recognition protein gene named BmßGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmßGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmßGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmßGRP4 in 5th instar larvae, while the overexpression of BmßGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmßGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmßGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmßGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmßGRP4 to escape host antiviral defense. Taken together, these results show that BmßGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.

12.
World J Surg Oncol ; 19(1): 125, 2021 Apr 18.
Article En | MEDLINE | ID: mdl-33866973

BACKGROUND: Lymphovascular invasion (LVI) is defined as the presence of cancer cells in lymphatics or blood vessels. This study aimed to evaluate the prognostic value of LVI in stage II colorectal cancer (CRC) patients with inadequate examination of lymph nodes (ELNs) and further combined LVI with the TNM staging system to determine the predictive efficacy for CRC prognosis. Adjuvant chemotherapy (ACT) was then evaluated for stage II CRC patients with LVI positivity (LVI+). METHODS: In order to avoid the effects of different ACT regimens, among 409 stage II patients, we chose 121 patients who received FOLFOX regimen and the 144 patients who did not receive ACT as the object of study. LVI was examined by hematoxylin-eosin (HE) staining. Kaplan-Meier analysis followed by a log-rank test was used to analyze survival rates. Univariate and multivariate analyses were performed using a Cox proportional hazards model. Harrell's concordance index (C-index) was used to evaluate the accuracy of different systems in predicting prognosis. RESULTS: The LVI+ status was significantly associated with pT stage, degree of differentiation, tumor stage, serum CEA and CA19-9 levels, perineural invasion (PNI), tumor budding (TB), and KRAS status. The 5-year overall survival (OS) rate of stage II patients with < 12 ELNs and LVI+ was less than stage IIIA. Multivariate analyses showed that LVI, pT-stage, serum CEA and CA19-9 levels, PNI, TB, and KRAS status were significant prognostic factors for stage II patients with < 12 ELNs. The 8th TNM staging system combined with LVI showed a higher C-index than the 8th TNM staging system alone (C-index, 0.895 vs. 0.833). Among patients with LVI+, the ACT group had a significantly higher 5-year OS and 5-year disease-free survival (DFS) than the surgery alone (SA) group (5-year OS, 66.7% vs. 40.9%, P = 0.004; 5-year DFS, 64.1% vs. 36.3%, P = 0.002). CONCLUSIONS: LVI is an independent prognostic risk factor for stage II CRC patients. Combining LVI with the 8th TNM staging system improved the predictive accuracy for CRC prognosis. ACT in stage II CRC patients with LVI+ is beneficial for survival.


Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Endothelium, Vascular/pathology , Neoplasm Invasiveness/pathology , Adult , Aged , Aged, 80 and over , Chemotherapy, Adjuvant , Colorectal Neoplasms/mortality , Disease-Free Survival , Female , Humans , Lymph Nodes/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Retrospective Studies , Survival Rate
13.
Dev Comp Immunol ; 119: 104035, 2021 06.
Article En | MEDLINE | ID: mdl-33535067

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious pathogenic microorganism that causes tremendous loss to sericulture. Previous studies have found that some proteins of serine protease family in the digestive juice of B. mori larvae have anti-BmNPV activity. In our previous publication about proteome analysis of the digestive juice of B. mori larvae, the digestive enzyme trypsin, alkaline A (BmTA) was filtered as a differentially expressed protein possibly involved in BmNPV resistance. Here, the biological characteristics and anti-BmNPV functions of BmTA were comprehensively analysed. The cDNA sequence of BmTA had an ORF of 768 nucleotides encoding 255 amino acid residues. Domain architecture analysis showed that BmTA contained a signal peptide and a typical Tryp_SPc domain. Quantitative real-time PCR analysis showed that BmTA was highly expressed in the larval stages and specifically expressed in the midgut of B. mori larvae. The expression level of BmTA in BmNPV resistant strain A35 was higher than that in susceptible strain P50. After BmNPV infection, the expression of BmTA increased in both strains from 24 to 72 h. Virus amplification analysis showed that the relative levels of VP39 in B. mori larvae and BmN cells infected with the appropriate concentration of recombinant-BmTA-treated BmNPV were significantly lower than in the control groups. Moreover, overexpression of BmTA in BmN cells significantly inhibited the amplification of BmNPV. Taken together, the results of this study indicated that BmTA possessed anti-BmNPV activity in B. mori, which broadens the horizon for virus-resistant breeding of silkworms.


Bombyx/immunology , Immunity, Innate/immunology , Insect Proteins/immunology , Nucleopolyhedroviruses/immunology , Trypsin/immunology , Amino Acid Sequence , Animals , Base Sequence , Blotting, Western , Bombyx/genetics , Bombyx/virology , Cell Line , Digestive System/immunology , Digestive System/metabolism , Digestive System/virology , Gene Expression/immunology , Gene Expression Profiling , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Larva/immunology , Larva/virology , Nucleopolyhedroviruses/physiology , Phylogeny , Proteolysis , Reverse Transcriptase Polymerase Chain Reaction , Trypsin/classification , Trypsin/genetics
14.
J Int Med Res ; 48(7): 300060520925322, 2020 Jul.
Article En | MEDLINE | ID: mdl-32691646

BACKGROUND: Spontaneous hemopneumothorax (SHP) is defined as the accumulation of >400 mL of blood in the pleural cavity in association with spontaneous pneumothorax. This rare clinical disorder may be life-threatening. CASE PRESENTATION: A 71-year-old woman presented with a 1-month history of recurrent bloody stool, and electronic colonoscopy suggested a rectal mass. Laparoscopic radical resection of rectal cancer was performed. Two days later, she developed chest tightness, shortness of breath, and slight pain in the left chest. Emergency chest radiography revealed mild left pneumothorax and pleural effusion. SHP was suspected and a thoracic drain was inserted. However, the patient developed hemorrhagic shock 3 hours after drainage. She underwent emergency video-assisted thoracic surgery (VATS), which revealed left lung tip rupture with bleeding and adhesive band fracture at the top of the left thoracic cavity. The ruptured lung tissue was removed and electrocoagulation at the adhesion band was performed for hemostasis. The patient was discharged on postoperative day 11. At the time of this writing, she had developed no SHP recurrence or any other complications. CONCLUSIONS: This case shows that conservative treatment may have serious consequences in patients with SHP. Thus, chest X-ray examination and VATS should be performed in patients with SHP.


Laparoscopy , Pneumothorax , Aged , Female , Hemopneumothorax/diagnostic imaging , Hemopneumothorax/etiology , Hemopneumothorax/surgery , Humans , Neoplasm Recurrence, Local , Pneumothorax/diagnostic imaging , Pneumothorax/etiology , Thoracic Surgery, Video-Assisted
15.
Front Microbiol ; 11: 1481, 2020.
Article En | MEDLINE | ID: mdl-32695093

Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.

17.
Insects ; 11(3)2020 Mar 01.
Article En | MEDLINE | ID: mdl-32121517

Previous studies have revealed that some proteins in Bombyx mori larvae digestive juice show antiviral activity. Here, based on the label-free proteomics data, BmLipase member H-A (BmLHA) was identified as being involved in the response to BmNPV infection in B. mori larvae digestive juice. In the present study, a gene encoding the BmLHA protein in B. mori was characterized. The protein has an open reading fragment of 999 bp, encoding a predicted 332 amino acid residue-protein with a molecular weight of approximately 35.9 kDa. The phylogenetic analysis revealed that BmLHA shares a close genetic distance with Papilio xuthus Lipase member H-A. BmLHA was highly expressed in the middle part of the B. mori gut, and the expression level increased with instar rising in larvae. There was higher expression of BmLHA in A35 than in P50 strains, and it was upregulated in both A35 and P50 strains, following BmNPV infection. The expression level of VP39 decreased significantly in appropriate recombinant-BmLHA-treated groups compared with the PBS-treated group in B. mori larvae and BmN cells. Meanwhile, overexpression of BmLHA significantly reduced the infectivity of BmNPV in BmN cells. These results indicated that BmLHA did not have digestive function but had anti-BmNPV activity. Taken together, our work provides valuable data for the clarification of the molecular characterization BmLHA and supplements research on proteins of anti-BmNPV activity in B. mori.

18.
Int J Mol Sci ; 21(2)2020 Jan 20.
Article En | MEDLINE | ID: mdl-31968548

DNA modification is a naturally occurring DNA modification in prokaryotic and eukaryotic organisms and is involved in several biological processes. Although genome-wide methylation has been studied in many insects, the understanding of global and genomic DNA methylation during insect early embryonic development, is lacking especially for insect diapause. In this study, we analyzed the relationship between DNA methylomes and transcriptomes in diapause-destined eggs compared to diapause-terminated eggs in the silkworm, Bombyx mori (B. mori). The results revealed that methylation was sparse in this species, as previously reported. Moreover, methylation levels in diapause-terminated eggs (HCl-treated) were 0.05% higher than in non-treated eggs, mainly due to the contribution of CG methylation sites. Methylation tends to occur in the coding sequences and promoter regions, especially at transcription initiation sites and short interspersed elements. Additionally, 364 methylome- and transcriptome-associated genes were identified, which showed significant differences in methylation and expression levels in diapause-destined eggs when compared with diapause-terminated eggs, and 74% of methylome and transcriptome associated genes showed both hypermethylation and elevated expression. Most importantly, Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses showed that methylation may be positively associated with Bombyx mori embryonic development, by regulating cell differentiation, metabolism, apoptosis pathways and phosphorylation. Through analyzing the G2/M phase-specific E3 ubiquitin-protein ligase (G2E3), we speculate that methylation may affect embryo diapause by regulating the cell cycle in Bombyx mori. These findings will help unravel potential linkages between DNA methylation and gene expression during early insect embryonic development and insect diapause.


Bombyx/genetics , DNA Methylation , Diapause, Insect/genetics , Epigenome , Transcriptome , Animals , Bombyx/embryology , Bombyx/physiology , Embryonic Development/genetics , Female , Insect Proteins , Ovum , Phosphorylation
19.
Int J Biol Markers ; 34(4): 356-363, 2019 Dec.
Article En | MEDLINE | ID: mdl-31564188

BACKGROUND: Programmed death-ligand 1 (PD-L1) is a programmed death 1 (PD-1) ligand that plays a pivotal role in the inhibition of the T-cell-mediated immune response. The expression of PD-L1 is associated with the prognosis and clinical outcomes of multiple tumors. However, the prognostic value of PD-L1 overexpression in colorectal cancer is still controversial. In this study, we sought to clarify this by presenting a meta-analysis of relevant studies. METHODS: Databases including PubMed, Web of Science, and EMBASE were systematically searched for studies concerning the expression of PD-L1 and survival in colorectal cancer. The reported hazard ratios (HR) with 95% confidence intervals (CI) of overall survival, disease-free survival, and recurrence-free survival in the included studies were analyzed by fixed effects/random effects models. RESULTS: Fifteen studies involving 3078 patients with colorectal cancer were included in our meta-analysis. Overexpression of PD-L1 was found to be associated with poor overall survival (HR 1.83; 95% CI 1.21, 2.79; P = 0.005) and poor recurrence-free survival (HR 2.78; 95% CI 1.43, 5.42; P = 0.003). However, no correlation was found between PD-L1 overexpression and poor disease-free survival (HR 1.23; 95% CI 0.83, 1.82; P = 0.305). Overexpression of PD-L1 indicating poor survival held true across different geographical areas, sample sizes, analysis types, sources of HRs, and cell types. CONCLUSION: Overexpression of PD-L1 is associated with worse prognosis in patients with colorectal cancer and can guide physicians in the application of PD-1/PD-L1 immune checkpoint-targeted therapy.


B7-H1 Antigen/immunology , Colorectal Neoplasms/immunology , B7-H1 Antigen/biosynthesis , Colorectal Neoplasms/mortality , Humans , Prognosis , Survival Analysis
20.
Int J Biol Markers ; 34(4): 348-355, 2019 Dec.
Article En | MEDLINE | ID: mdl-31544570

BACKGROUND: The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is ubiquitously overexpressed in several human cancers. This study was designed to explore the expression and role of IQGAP3 in colorectal cancer. METHODS: We first assessed the IQGAP3 expression level in colorectal cancer. The correlation of IQGAP3 expression with the clinicopathological characteristics and prognosis was then assessed. At last, we investigated the function of IQGAP3 in colorectal cancer by knocking down its expression in colorectal cancer cell lines. RESULTS: Consistent with the conclusions drawn from The Cancer Genome Atlas database, IQGAP3 was upregulated in colorectal cancer at the tissue level and cellular level. Based on immunohistochemistry results of the tissue microarrays, we demonstrated that higher expression of IQGAP3 was associated with higher tumor node metastasis stage (P = 0.005), higher incidence of lymph node metastasis (P = 0.004), and shorter overall survival (P = 0.022). Knockdown of IQGAP3 in colorectal cancer cell lines remarkably decreased their proliferation and migration abilities. CONCLUSION: Our data provide evidence that IQGAP3 significantly promote malignant progression of colorectal cancer and could serve as a potential therapeutic target.


Colorectal Neoplasms/metabolism , GTPase-Activating Proteins/biosynthesis , Cell Movement/physiology , Cell Proliferation/physiology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Disease Progression , Female , GTPase-Activating Proteins/genetics , Gene Knockdown Techniques , Humans , Male , Middle Aged , Prognosis
...